Petrochemical equipment tracking is a fundamental and important technology in petrochemical industry security monitoring, equipment working risk analysis, and other applications. In complex scenes where the multiple pipelines present different directions and many kinds of equipment have huge scale and shape variation in seriously mutual occlusions captured by moving cameras, the accuracy and speed of petrochemical equipment tracking would be limited because of the false and missed tracking of equipment with extreme sizes and severe occlusion, due to image quality, equipment scale, light, and other factors. In this paper, a new multiple petrochemical equipment tracking method is proposed by combining an improved Yolov7 network with attention mechanism and small target perceive layer and a hybrid matching that incorporates deep feature and traditional texture and location feature. The model incorporates the advantages of channel and spatial attention module into the improved Yolov7 detector and Siamese neural network for similarity matching. The proposed model is validated on the self-built petrochemical equipment video data set and the experimental results show it achieves a competitive performance in comparison with the related state-of-the-art tracking algorithms.
Petrochemical equipment detection technology plays important role in petrochemical industry security monitoring systems, equipment working status analysis systems, and other applications. In complex scenes, the accuracy and speed of petrochemical equipment detection would be limited because of the missing and false detection of equipment with extreme sizes, due to image quality, equipment scale, light, and other factors. In this paper, a one-stage attention mechanism-enhanced Yolov5 network is proposed to detect typical types of petrochemical equipment in industry scene images. The model considers the advantages of the channel and spatial attention mechanism and incorporates it into the three mainframes. Furthermore, the multiscale deep feature is fused with a bottom-up feature pyramid structure to learn the features of equipment with extreme sizes. Moreover, an adaptive anchor generation algorithm is proposed to handle objects with extreme sizes in a complex background. In addition, the data augmentation strategy is also introduced to handle the relatively small and extremely large sample and to enhance the robustness of the fused model. The proposed model was validated on the self-built petrochemical equipment image data set, and the experimental results show that it achieves a competitive performance in comparison with the related state-of-the-art detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.