Slope failure behaviour of noncohesive media with the consideration of gravity and ground excitations is examined using the two-dimensional combined finite-discrete element method (FDEM). The FDEM aims at solving large-scale transient dynamics and is particularly suitable for this problem. The method discretises an entity into a couple of individual discrete elements. Within each discrete element, the finite element method (FEM) formulation is embedded so that contact forces and deformation between and of these discrete elements can be predicted more accurately. Noncohesive media is simply modelled with assembly of individual discrete elements without cohesion, that is, no joint elements need to be defined. To validate the effectiveness of the FDEM modelling, two examples are presented and compared with results from other sources. The FDEM results on gravitational collapse of rectangular soil heap and landslide triggered by the Chi-Chi earthquake show that the method is applicable and reliable for the analysis of slope failure behaviour of noncohesive media through comparison with results from other known methods such as the smoothed particle hydrodynamics (SPH), the discrete element method (DEM) and the material point method (MPM).
Plantation-grown Eucalyptus nitens (E. nitens) has been grown predominantly for the pulp and paper industry. In this study, the suitability of E. nitens as a structural material is examined using static tensile tests in a universal testing machine. The anisotropic tensile behaviour of 240 Eucalyptus nitens small clear wood samples with a diversity of grain angles was examined in both dry and wet conditions. The samples had a highly anisotropic tensile characterisation in the context of both a low moisture content (MC = 12%) and a high moisture content (MC > its fibre saturation point, FSP). The results showed that, in a high moisture content condition, the wood showed a lower failure strength and more ductility at all grain angles than in a low moisture content condition. The underlying failure mechanism of Eucalyptusnitens timber in tension was determined in detail from the perspective of the microstructure of wood cellulose polymer composites. The mean tensile failure strengths perpendicular and parallel to the fibre direction were, respectively, 5.6 and 91.6 MPa for the low MC and 3.8 and 62.1 MPa for the high MC condition. This research provides a basis for using E. nitens as a potential structural tensile member. The moisture modification factors of Eucalyptus timber at a mean level are higher than those of the traditional construction material, Pinus radiata, implying that E. nitens is promising as a material to be used for tensile members in water saturated conditions.
Historic masonry heritages, such as cathedrals, colonnades, and arch bridges, were constructed with individual components (e.g., stones, bricks, other materials) bound together with, e.g., mortar, and they are very vulnerable to foundation settlement, especially differential settlement which occurs frequently in engineering practice. These masonry structures are discontinuous, and therefore, their behavior under differential settlement is highly nonlinear and complex. In this study, the combined finite-discrete element method (FDEM) is employed to simulate the failure behavior of historic masonry heritages subjected to support differential settlement. In the FDEM models, structures are discretized into elements where FE formulation is incorporated, resulting in an accurate estimate of structural deformation and interaction forces. In addition, a fracture model is employed for masonry blocks. Numerical examples are given and compared with results from the literature, showing that the FDEM is applicable and reliable in simulating the failure behavior of historic masonry heritages. Further analyses including block fracture reveal that fracturing can decrease the capacity against settlement significantly.
Pointed masonry barrel vaults are widely used in classical historic structures, such as cathedrals and aqueducts, and they are very sensitive to differential settlement. These vaults are assemblages of masonry units and mortar. Since the bonding strength of mortar degrades over ages, dry-joint assumption is widely accepted. Failure behavior of dry-joint pointed masonry barrel vaults subjected to differential settlement is highly complex, discontinuous, and nonlinear. In this study, a 3D GPGPU-parallelized hybrid finite-discrete element method (FDEM), which is an advanced extension of finite element method (FEM) and discrete element method (DEM), is employed to investigate the capacity of pointed masonry barrel vaults subjected to differential settlement. When modeling barrel vaults with 3D FDEM, each masonry unit is discretized into a couple of four-node tetrahedral elements whose deformability is characterized by standard finite element formulation. Thus, structural deformation and interaction forces can be obtained in an accurate manner. Numerical examples are presented and validated with results from literatures. A base case is selected, and the influence of embrace angle ([Formula: see text], sharpness (Sh), stockiness (St), and out-of-plane length ([Formula: see text] on the failure behavior is parametrically investigated. The larger the [Formula: see text] or Sh, the smaller the ultimate settlement. The same applies to St in general, while an excessively large St results in small ultimate settlement due to sliding. The influence of [Formula: see text] can be mitigated should it is large enough compared with the span. It is demonstrated that the 3D GPGPU-parallelized FDEM is a robust tool for analyzing the vulnerability of pointed masonry barrel vaults subjected to differential settlement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.