Time difference of arrival (TDoA) based on a group of sensor nodes with known locations has been widely used to locate targets. Two-step weighted least squares (TSWLS), constrained weighted least squares (CWLS), and Newton–Raphson (NR) iteration are commonly used passive location methods, among which the initial position is needed and the complexity is high. This paper proposes a hybrid firefly algorithm (hybrid-FA) method, combining the weighted least squares (WLS) algorithm and FA, which can reduce computation as well as achieve high accuracy. The WLS algorithm is performed first, the result of which is used to restrict the search region for the FA method. Simulations showed that the hybrid-FA method required far fewer iterations than the FA method alone to achieve the same accuracy. Additionally, two experiments were conducted to compare the results of hybrid-FA with other methods. The findings indicated that the root-mean-square error (RMSE) and mean distance error of the hybrid-FA method were lower than that of the NR, TSWLS, and genetic algorithm (GA). On the whole, the hybrid-FA outperformed the NR, TSWLS, and GA for TDoA measurement.
There are many algorithms that can be used to fuse sensor data. The complementary filtering algorithm has low computational complexity and good real-time performance characteristics. It is very suitable for attitude estimation of small unmanned aerial vehicles (micro-UAVs) equipped with low-cost inertial measurement units (IMUs). However, its low attitude estimation accuracy severely limits its applications. Though, many methods have been proposed by researchers to improve attitude estimation accuracy of complementary filtering algorithms, there are few studies that aim to improve it from the data processing aspect. In this paper, a real-time first-order differential data processing algorithm is proposed for gyroscope data, and an adaptive adjustment strategy is designed for the parameters in the algorithm. Besides, the differential-nonlinear complementary filtering (D-NCF) algorithm is proposed by combine the first-order differential data processing algorithm with the basic nonlinear complementary filtering (NCF) algorithm. The experimental results show that the first-order differential data processing algorithm can effectively correct the gyroscope data, and the Root Mean Square Error (RMSE) of attitude estimation of the D-NCF algorithm is smaller than when the NCF algorithm is used. The RMSE of the roll angle decreases from 1.1653 to 0.5093, that of the pitch angle decreases from 2.9638 to 1.5542, and that of the yaw angle decreases from 0.9398 to 0.6827. In general, the attitude estimation accuracy of D-NCF algorithm is higher than that of the NCF algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.