Epidemiologic data suggested that there was an obvious predominance of young adult patients with a slight female proneness in severe acute respiratory syndrome (SARS). The angiotensin-converting enzyme 2 (ACE2) was very recently identified as a functional receptor for SARS virus and is therefore a prime target for pathogenesis and pharmacological intervention. Rats of both genders at three distinct ages (young-adult, 3 months; middle-aged, 12 months; old, 24 months) were evaluated to determine the characteristic of ACE2 expression in lung and the effect of aging and gender on its expression. ACE2 was predominantly expressed in alveolar epithelium, bronchiolar epithelium, endothelium and smooth muscle cells of pulmonary vessels with similar content, whereas no obvious signal was detected in the bronchiolar smooth muscle cells. ACE2 expression is dramatically reduced with aging in both genders: young-adult vs. old P < 0.001 (by 78% in male and 67% in female, respectively) and middle-aged vs. old P < 0.001 (by 71% in male rats and 59% in female rats, respectively). The decrease of ACE2 content was relatively slight between young-adult and middle-aged groups (by 25% in male and 18% in female, respectively). Although there was no gender-related difference of ACE2 in young-adult and middle-aged groups, a significantly higher ACE2 content was detected in old female rats than male. In conclusion, the more elevated ACE2 in young adults as compared to aged groups may contribute to the predominance in SARS attacks in this age group.
This preliminary study showed that intravenous infusion of autologous EPCs seemed to be feasible and safe, and might have beneficial effects on exercise capacity and pulmonary hemodynamics in patients with IPAH. (Safety and Efficacy Study of Transplantation of EPCs to Treat Idiopathic Pulmonary Arterial Hypertension; http://www.clinicaltrials.gov/ct/show/NCT00257413?order=1; NCT00257413).
Increased macrophage accumulation occurs in the atria of patients with atrial fibrillation (AF). However, the phenotype and functions of the macrophages in AF remain unclear. We investigated the macrophage-atrial myocyte interaction in AF patients and found that the increased macrophages were mainly pro-inflammatory macrophages (iNOS+, Arg1−). Tachypacing of HL-1 atrial myocytes also led to pro-inflammatory macrophage polarization. In addition, lipopolysaccharide (LPS)-stimulated pro-inflammatory macrophages-induced atrial electrical remodeling, evidenced by increased AF incidence and decreased atrial effective refractory period and L-type calcium currents (I Ca-L) in both canine and mouse AF models. Depletion of macrophages relieved LPS-induced atrial electrical remodeling, confirming the role of pro-inflammatory macrophages in the pathogenesis of AF. We also found that the effect of LPS-stimulated macrophages on atrial myocytes was mediated by secretion of interleukin 1 beta (IL-1β), which inhibited atrial myocyte quaking protein (QKI) expression. IL-1β knockout in macrophages restored the LPS-stimulated macrophage-induced inhibition of QKI and CACNA1C (α1C subunit of L-type calcium channel) in atrial myocytes. Meanwhile, QKI overexpression in atrial myocytes restored the LPS-stimulated macrophage-induced electrical remodeling through enhanced binding of QKI to CACNA1C mRNA, which upregulated the expression of CACNA1C as well as I Ca-L. In contrast, QKI knockout inhibited CACNA1C expression. Finally, using transcription factor activation profiling plate array and chromatin immunoprecipitation, we revealed that special AT-rich sequence binding protein 1 activated QKI transcription. Taken together, our study uncovered the functional interaction between macrophages and atrial myocytes in AF. AF induced pro-inflammatory macrophage polarization while pro-inflammatory macrophages exacerbated atrial electrical remodeling by secreting IL-1β, further inhibiting QKI expression in atrial myocytes, which contributed to I Ca-L downregulation. Our study demonstrates a novel molecular mechanism underlying the pathogenesis and progression of AF and suggests that QKI is a potential therapeutic target.Electronic supplementary materialThe online version of this article (doi:10.1007/s00395-016-0584-z) contains supplementary material, which is available to authorized users.
Background Cardiac right ventricular remodeling plays a substantial role in pathogenesis, progression, and prognosis of pulmonary hypertension. Cardiac magnetic resonance is considered an excellent tool for evaluation of right ventricle. However, value of right ventricular remodeling parameters derived from cardiac magnetic resonance in predicting adverse events is controversial. Methods The Pubmed (MEDLINE), Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure platform (CNKI), China Science and Technology Journal Database (VIP), and Wanfang databases were systematically searched until November 2019. Studies reporting hazard ratios (HRs) for all-cause death and composite end point of pulmonary hypertension were included. Univariate HRs were extracted from the included studies to calculate pooled HRs of each right ventricular remodeling parameter. Results Eight studies with 1120 patients examining all-cause death (female: 44%–92%, age: 40–67 years old, follow-up time: 27–48 months) and 10 studies with 604 patients examining composite end point (female: 60%–83%, age: 29–57 years old, follow-up time: 10–68 months) met the criteria. Right ventricular ejection fraction was the only parameter which could predict both all-cause death (pooled HR=0.95; P =0.014) and composite end point (pooled HR=0.95; P <0.001), although right ventricular end-diastolic volume index (pooled HR=1.01; P <0.001), right ventricular end-systolic volume index (pooled HR=1.01, P =0.045), and right ventricular mass index (pooled HR=1.03, P =0.032) only predicted composite outcome. Similar results were observed when we conducted the meta-analysis among patients with World Health Organization type I of pulmonary hypertension. Conclusions Cardiac magnetic resonance–derived right ventricular remodeling parameters have independent prognostic value for all-cause death and composite end point of patients with pulmonary hypertension. Right ventricular ejection fraction was the strongest prognostic factor among all the right ventricular remodeling parameters. Right ventricular mass index, right ventricular end-diastolic volume index, and right ventricular end-systolic volume index also demonstrated prognostic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.