As rates of new COVID-19 cases decline across Europe due to non-pharmaceutical interventions such as social distancing policies and lockdown measures, countries require guidance on how to ease restrictions while minimizing the risk of resurgent outbreaks. Here, we use mobility and case data to quantify how coordinated exit strategies could delay continental resurgence and limit community transmission of COVID-19. We find that a resurgent continental epidemic could occur as many as 5 weeks earlier when well-connected countries with stringent existing interventions end their interventions prematurely. Further, we found that appropriate coordination can greatly improve the likelihood of eliminating community transmission throughout Europe. In particular, synchronizing intermittent lockdowns across Europe meant half as many lockdown periods were required to end community transmission continent-wide.
As rates of new COVID-19 cases decline across Europe due to non-pharmaceutical interventions such as social distancing policies and lockdown measures, countries require guidance on how to ease restrictions while minimizing the risk of resurgent outbreaks. Here, we use mobility and case data to quantify how coordinated exit strategies could delay continental resurgence and limit community transmission of COVID-19. We find that a resurgent continental epidemic could occur as many as 5 weeks earlier when well-connected countries with stringent existing interventions end their interventions prematurely. Further, we found that appropriate coordination can greatly improve the likelihood of eliminating community transmission throughout Europe. In particular, synchronizing intermittent lockdowns across Europe meant half as many lockdown periods were required to end community transmission continent-wide.
This work quantifies the impact of interventions to curtail mobility and social interactions in order to control the COVID-19 pandemic. We analyze the change in world-wide mobility at multiple spatio-temporal resolutions -- county, state, country -- using an anonymized aggregate mobility map that captures population flows between geographic cells of size 5 km2. We show that human mobility underwent an abrupt and significant change, partly in response to the interventions, resulting in 87% reduction of international travel and up to 75% reduction of domestic travel. Taking two very different countries sampled from the global spectrum, we observe a maximum reduction of 42% in mobility across different states of the United States (US), and a 68% reduction across the states of India between late March and late April. Since then, there has been an uptick in flows, with the US seeing 53% increase and India up to 38% increase with respect to flows seen during the lockdown. As we overlay this global map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell -- often before stay-at-home orders were issued. Further, in order to understand mixing within a region, we propose a new metric to quantify the effect of social distancing on the basis of mobility. We find that population mixing has decreased considerably as the pandemic has progressed and are able to measure this effect across the world. Finally, we carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. To our knowledge, this work is the first to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.
Timely interventions and early preparedness of healthcare resources are crucial measures to tackle the \mbox{COVID-19} disease. To aid these efforts, we developed the Mobility-Augmented SEIR model (\mbox{MA-SEIR}) that leverages Google's aggregate and anonymized mobility data to augment classic compartmental models. We show in a retrospective analysis how this method can be applied at an early stage in the \mbox{COVID-19} epidemic to forecast its subsequent spread and onset in different geographic regions, with minimal parameterization of the model. This provides insight into the role of near real-time aggregate mobility data in disease spread modeling by quantifying substantial changes in how populations move both locally and globally. These changes would be otherwise very hard to capture using less timely data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.