The seismic sequence of November 2019 in Albania culminating with the Mw = 6.4 event of 26 November 2019 was examined from the geodetic (InSAR and GNSS), structural, and historical viewpoints, with some ideas on possible areas of greater hazard. We present accurate estimates of the coseismic displacements using permanent GNSS stations active before and after the sequence, as well as SAR interferograms with Sentinel-1 in ascending and descending mode. When compared with the displacements predicted by a dislocation model on an elastic half space using the moment tensor information of a reverse fault mechanism, the InSAR and GNSS data fit at the mm level provided the hypocentral depth is set to 8 ± 2 km. Next, we examined the elastic stress generated by the Mw = 7.2 Montenegro earthquake of 1979, with the Albania 2019 event as receiver fault, to conclude that the Coulomb stress transfer, at least for the elastic component, was too small to have influenced the 2019 Albania event. A somewhat different picture emerges from the combined elastic deformation resulting after the two (1979 and 2019) events: we investigated the fault geometries where the Coulomb stress is maximized and concluded that the geometry with highest induced Coulomb stress, of the order of ca. 2–3 bar (0.2–0.3 MPa), is that of a vertical, dextral strike slip fault, striking SW to NE. This optimal receiver fault is located between the faults activated in 1979 and 2019, and very closely resembles the Lezhe fault, which marks the transition between the Dinarides and the Albanides.
Mass movements represent a serious threat to the stability of human structures and infrastructures, and cause loss of lives and severe damages to human properties every year worldwide. Built structures located on potentially unstable slopes are susceptible to deformations due to the displacement of the ground that at worst can lead to total destruction. Synthetic aperture radar (SAR) data acquired by Sentinel-1 satellites and processed by multi-temporal interferometric SAR (MT-InSAR) techniques can measure centimeter to millimeter-level displacement with weekly to monthly updates, characterizing long-term large-scale behavior of the buildings and slopes. However, the spatial resolution and short wavelength weaken the performance of Sentinel-1 in recognizing features (i.e., single buildings) inside image pixels and maintaining the coherence in mountainous vegetated areas. We have proposed and applied a methodology that combines Sentinel-1 interferometry with ground-based geomatics techniques, i.e., global navigation satellite system (GNSS), terrestrial laser scanning (TLS) and terrestrial structure from motion photogrammetry (SfM), for fully assessing building deformations on a slope located in the north-eastern Italian pre-Alps. GNSS allows verifying the ground deformation estimated by MT-InSAR and provides a reference system for the TLS and SfM measurements, while TLS and SfM allow the behavior of buildings located in the investigated slope to be monitored in great detail. The obtained results show that damaged buildings are located in the most unstable sectors of the slope, but there is no direct relationship between the rate of ground deformation of these sectors and the temporal evolution of damages to a single building, indicating that mass movements cause the displacement of blocks of buildings and each of them reacts differently according to its structural properties. This work shows the capability of MT-InSAR, GNSS, TLS and SfM in monitoring both buildings and geological processes that affect their stability, which plays a key role in geohazard analysis and assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.