Here we report the discovery of oncogenic mutations in the Hedgehog and mitogen-activated protein kinase (MAPK) pathways in over 80% of ameloblastomas, locally destructive odontogenic tumors of the jaw, by genomic analysis of archival material. Mutations in SMO (encoding Smoothened, SMO) are common in ameloblastomas of the maxilla, whereas BRAF mutations are predominant in tumors of the mandible. We show that a frequently occurring SMO alteration encoding p.Leu412Phe is an activating mutation and that its effect on Hedgehog-pathway activity can be inhibited by arsenic trioxide (ATO), an anti-leukemia drug approved by the US Food and Drug Administration (FDA) that is currently in clinical trials for its Hedgehog-inhibitory activity. In a similar manner, ameloblastoma cells harboring an activating BRAF mutation encoding p.Val600Glu are sensitive to the BRAF inhibitor vemurafenib. Our findings establish a new paradigm for the diagnostic classification and treatment of ameloblastomas.
The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.
Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.
We report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using this method, RNAP II is stalled briefly at a defined template position before restoring the next NTP. Significantly, slow reaction steps are identified both before and after phosphodiester bond synthesis, and both of these steps can be highly dependent on the next templated NTP. The initial and final NTP-driven events, however, are not identical, because the slow step after chemistry, which includes translocation and pyrophosphate release, is regulated differently by elongation factors hepatitis ␦ antigen and transcription factor IIF. Because recovery from a stall and the processive transition from one bond to the next can be highly NTP-dependent, we conclude that translocation can be driven by the incoming substrate NTP, a model fully consistent with the RNAP II elongation complex structure.Pre-steady state kinetic analysis allows the progress of an enzymatic reaction to be tracked in real time (1, 2), and coupling enzyme functional dynamics to the structure provides the clearest insight into the mechanism. In this paper, we compare the first transient state kinetic studies of human (Homo sapiens) RNAP II 1 to the x-ray structure of the yeast (Saccharomyces cerevisiae) RNAP II elongation complex (EC) (3). These studies give new insight into the RNAP II mechanism and demonstrate the feasibility of a detailed kinetic study of a highly regulated enzyme that is at the hub of gene control in human cells.There is increasing recognition that transcriptional elongation is highly regulated in eukaryotes (4 -8). As an example, hepatitis ␦ antigen (HDAg) strongly stimulates RNAP II elongation in vitro (6, 9). HDAg is the sole gene product of the small RNA genome of hepatitis ␦ virus, which is maintained as a satellite particle by hepatitis B virus. The role of HDAg in elongation may be clinically significant because hepatitis ␦ virus often complicates severe and chronic presentations of human hepatitis B virus infection. The general cellular transcription factor IIF (TFIIF) has been shown to stimulate RNAP II elongation 5-10-fold in vitro, by suppressing transcriptional pausing (10 -16). The role of TFIIF in elongation may be of particular importance during the promoter escape phase of the transcription cycle (17, 18). Here viral HDAg and cellular TFIIF are used as probes of H. sapiens RNAP II elongation.In this work, we use rapid quench kinetics to demonstrate critical NTP-dependent steps during RNA synthesis. First, we analyzed recovery from a stall at a defined template position, in the presence of TFIIF or HDAg. During stall recovery, two fractions of EC were clearly observed on the active pathway, and most significantly, these ECs had different requirements for bindin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.