Mini tracked truck’s working unit is a device constrained by the dual parallelogram. This unit can make the goods remain translational during the process of loading and unloading so as to ensure the work process safe and reliable. Because the device is consisting of two parallelograms in series and using the rail to constrain its trajectory, the institutional force is very complicated. Therefore, this article uses statics method to analyze the force that acts on the working unit, establish the mechanical equations of the main arm cylinder and the lifting arm cylinder. The article respectively gives the simulation of the mechanical properties of the main arm cylinder during the loading process and the lifting arm cylinder during the lifting process basing on MATLAB. Research result provides a theoretical basis for the design of this type of working unit.
Through analyzed the cleaning process of rear rolling type sweeper, the theoretical model of waste particle trajectory was established during the sweeper working process by using the contact theory of modern contact dynamics, and the ideal theory track of waste particle was simulated and optimized by using MATLAB. The three-dimensional solid model of the working device was created by using UG software, and virtual prototype model was completed by using ADAMS software, and rigid brush was replaced by neutral file with brush features characterize that was generated by finite element analysis software, and contact relationship of waste particle during the working process was added by ADAMS contact order, and rigid-flexible coupling virtual prototype system was completed and kinematics simulation was run. Finally, compared the trajectory curve from ADAMS simulation with the theoretical path from MATLAB, the Theoretical model was proved correctness. The theoretical research and simulation analysis was made test and verify each other. Facilitate the development of the same type of products.
Through analyzed the cleaning process of rear rolling type sweeper, the theoretical model of waste particle trajectory was established during the sweeper working process by using the contact theory of modern contact dynamics, and the ideal theory track of waste particle was simulated and optimized by using MATLAB. The three-dimensional solid model of the working device was created by using UG software, and virtual prototype model was completed by using ADAMS software, and rigid brush was replaced by neutral file with brush features characterize that was generated by finite element analysis software, and contact relationship of waste particle during the working process was added by ADAMS contact order, and rigid-flexible coupling virtual prototype system was completed and kinematics simulation was run. Finally, compared the trajectory curve from ADAMS simulation with the theoretical path from MATLAB, the Theoretical model was proved correctness. The theoretical research and simulation analysis was made test and verify each other. Facilitate the development of the same type of products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.