In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science.
In the present study, regenerated cellulose membrane with "imprinted morphology" and low crystallinity was fabricated from the crystal cellulose/[Bmim]Cl solution. Spherulites of 1-butyl-3-methilimidazolium chloride ([Bmim]Cl) and cellulose/ [Bmim]Cl solution were observed using polarized optical microscopy under certain condition. The fabricated cellulose membranes presented some particular characteristics compared with the membrane prepared from traditional cellulose/[Bmim]Cl solution. All the fabricated membranes were characterized by optical microscope, Wide-angle X-ray diffraction (WAXD), thermo-gravimetric analysis, and mechanical testing. The images showed that the resulting membranes prepared from crystal cellulose/[Bmim]Cl solution were "imprinted" with patterns which originated from the crystalline structure of [Bmim]Cl. The results of WAXD showed that the obtained cellulose membrane exhibited low diffraction peaks and crystallinity of approximately 24.57%. Furthermore, the low crystallinity led to the low mechanical property (27.5 MPa), thermal stability (315.4 8C), and high moisture regain (9.5%). V C 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43798.
CdS has attracted much attention due to its suitable bandgap and excellent photocatalytic performance for producing renewable H2 energy. However, photogenerated holes in CdS moves slowly relative to photogenerated electrons,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.