Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan–Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc.
Chondrocyte maturation during endochondral bone formation is regulated by a number of signals that either promote or inhibit maturation. Among these, two well-studied signaling pathways play crucial roles in modulating chondrocyte maturation: transforming growth factor-beta (TGF-β)/ Smad3 signaling slows the rate of chondrocyte maturation, while Wingless/INT-1-related (Wnt)/β-catenin signaling enhances the rate of chondrocyte maturation. Axin1 and Axin2 are functionally equivalent and have been shown to inhibit Wnt/β-catenin signaling and stimulate TGF-β signaling. Here we show that while Wnt3a stimulates Axin2 in a negative feedback loop, TGF-β suppresses the expression of both Axin1 and Axin2 and stimulates β-catenin signaling. In Axin2 −/− chondrocytes, TGF-β treatment results in a sustained increase in β-catenin levels compared to wildtype chondrocytes. In contrast, overexpression of Axin enhanced TGF-β signaling while overexpression of β-catenin inhibited the ability of TGF-β to induce Smad3-sensitive reporters. Finally, the suppression of the Axins is Smad3-dependent since the effect is absent in Smad3 −/− chondrocytes. Altogether these findings show that the Axins act to integrate signals between the Wnt/ β-catenin and TGF-β/Smad pathways. Since the suppression Axin1 and Axin2 expression by TGF-β reduces TGF-β signaling and enhances Wnt/β-catenin signaling, the overall effect is a shift from TGF-β toward Wnt/β-catenin signaling and an acceleration of chondrocyte maturation.
Chinese Herbal Medicine (CHM) plays a significant role in breast cancer treatment. We conduct the study to ascertain the relative molecular targets of effective Chinese herbs in treating stage IV breast cancer.Survival benefit of CHM was verified by Kaplan-Meier method and Cox regression analysis. A bivariate correlation analysis was used to find and establish the effect of herbs in complex CHM formulas. A network pharmacological approach was adopted to explore the potential mechanisms of CHM.Patients in the CHM group had a median survival time of 55 months, which was longer than the 23 months of patients in the non-CHM group. Cox regression analysis indicated that CHM was an independent protective factor. Correlation analysis showed that 10 herbs were strongly correlated with favorable survival outcomes (P<0.01). Bioinformatics analyses suggested that the 10 herbs might achieve anti-breast cancer activity primarily through inhibiting HSP90, ERα and TOP-II related pathways.
Axis inhibition proteins 1 and 2 (Axin1 and Axin2) are scaffolding proteins that modulate at least two signaling pathways that are crucial in skeletogenesis: the Wnt/b-catenin and TGF-b signaling pathways. To determine whether Axin2 is important in skeletogenesis, we examined the skeletal phenotype of Axin2-null mice in a wild-type or Axin1 þ/À background. Animals with disrupted Axin2 expression displayed a runt phenotype when compared to heterozygous littermates. Whole-mount and tissue b-galactosidase staining of Axin2 LacZ/LacZ mice revealed that Axin2 is expressed in cartilage tissue, and histological sections from knockout animals showed shorter hypertrophic zones in the growth plate. Primary chondrocytes were isolated from Axin2-null and wild-type mice, cultured, and assayed for type X collagen gene expression. While type II collagen levels were depressed in cells from Axin2-deficient animals, type X collagen gene expression was enhanced. There was no difference in BrdU incorporation between null and heterozygous mice, suggesting that loss of Axin2 does not alter chondrocyte proliferation. Taken together, these findings reveal that disruption of Axin2 expression results in accelerated chondrocyte maturation. In the presence of a heterozygous deficiency of Axin1, Axin2 was also shown to play a critical role in craniofacial and axial skeleton development. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.