High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W 2 /O 2 /(O 1 /W 1 )) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil−water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.
Multi-compartmentalized microdroplets composed of a multiple subcompartment shell and single microscale host compartment core were prepared facilely for achieving programmed release of hydrophobic cargoes.
g crude fat, it is found that Amaranthus caudatus L. oil has unique nutritional characteristics e.g., vitamin E, polyphenols, sterols and other trace active components with a potential stronger antioxidant activity than ordinary oils 6,7 . Amaranthus caudatus L. oil contains among others linoleic acid up to 50 , tocopherols 802 mg/ kg , total sterols 2460 mg/100 g and squalene 4.16 g/kg of seed 8,9 . These components have shown remarkable antioxidant activity, benefits to nutrition and cardiovascular system health 10 . Efficient techniques had been used to recover oil from the plant resources, such as solvent extraction, pressing, subcritical extraction, supercritical fluid extraction, ultrasound-and enzyme-assisted extraction. Comparatively, solvent extraction provides efficient oil recovery, low-cost and low-energy consumption. In addition, both the extraction efficiency and oils activities were depended on the methods as well as the solvent used 11,12 . As we known, various compounds with different chemical characteristics and polarities have different solubility in a Abstract: Functional compositions, physicochemical properties and antioxidant activities of Amaranthus caudatus L. oils (ACO) obtained by different solvents were comparatively investigated. All the resulted ACO were enrich in 75% unsaturated fatty acid and in squalene of about 4 g/100 g. Different solvents showed varying in oil extraction, where acetone results a highest yield of 6.80 g/100 g. ACO extracted by ethanol showed a highest tocopherol (1351.26 mg/kg), polyphenols (211.28 mg/kg) and squalene (42519.13 mg/kg). However, phytosterols in ACO extracted by hexane (27571.20 mg/kg) was higher than that by acetone (19789.91 mg/kg), ethanol (22015.73 mg/kg) and petroleum ether (24763.30 mg/kg). Furthermore, antioxidant activity of ACO was also measured by DPPH, ABTS and FRAP assay. According to principal component and correlation analysis, squalene was correlated with the DPPH scavenging ability, but phytosterols and tocopherols was correlated with the ABTS and ferric reducing ability of the oils, respectively. This study provides a promising excellent source of functional oil for food industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.