Muscle fatigue often occurs over a long period of exercise, and it can increase the risk of muscle injury. Evaluating the state of muscle fatigue can avoid unnecessary overtraining and injury of the muscle. Ultrasound imaging can non-invasively visualize muscle tissue in real-time. Image entropy is commonly used to characterize the texture of an image. In this study, we evaluated changes in the ultrasound image entropy (USIE) during the fatigue process. Twelve volunteers performed static sustained contractions of biceps brachii at four different intensities (20%, 30%, 40%, and 50% of maximal voluntary contraction torque). The ultrasound images and surface electromyography (sEMG) signals were acquired during exercise to fatigue. We found that (1) the root-mean-square of the sEMG signal increased, the USIE decreased significantly with time during the sustained contractions; (2) the maximum endurance time (MET) and the decline percentage of USIE were significantly different ( p < .05) among the four contraction intensities; (3) the decline slope of USIE of the same volunteer was basically the same at different contraction intensities. The USIE could be a new method for the evaluation of skeletal muscle fatigue state.
Long-term exposure to microgravity leads to muscle atrophy, which is primarily characterized by a loss of muscle mass and strength and reduces one′s functional capability. A weightlessness-induced muscle atrophy model was established using the tail suspension test to evaluate the intervention or therapeutic effect of low-intensity pulsed ultrasound (LIPUS) on muscle atrophy. The rats were divided into five groups at random: the model group (B), the normal control group (NC), the sham-ultrasound control group (SUC), the LIPUS of 50 mW/cm2 radiation group (50 UR), and the LIPUS of 150 mW/cm2 radiation group (150 UR). Body weight, gastrocnemius weight, muscle force, and B-ultrasound images were used to evaluate muscle atrophy status. Results showed that the body weight, gastrocnemius weight, and image entropy of the tail suspension group were significantly lower than those of the control group (p < 0.01), confirming the presence of muscle atrophy. Although the results show that the muscle force and two weights of the rats stimulated by LIPUS are still much smaller than those of the NC group, they are significantly different from those of the pure tail suspension B group (p < 0.01). On day 14, the gastrocnemius forces of the rats exposed to 50 mW/cm2 and 150 mW/cm2 LIPUS were 150% and 165% of those in the B group. The gastrocnemius weights were both 135% of those in the B group. This suggests that ultrasound can, to a certain extent, prevent muscular atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.