Conspectus The observation of complex structural transitions in biological and abiological molecular objects within time scales amenable to molecular dynamics (MD) simulations is often hampered by significant free energy barriers associated with entangled movements. Importance-sampling algorithms, a powerful class of numerical schemes for the investigation of rare events, have been widely used to extend simulations beyond the time scale common to MD. However, probing processes spanning milliseconds through microsecond molecular simulations still constitutes in practice a daunting challenge because of the difficulty of taming the ruggedness of multidimensional free energy surfaces by means of naive transition coordinates. To address this limitation, in recent years we have elaborated importance-sampling methods relying on an adaptive biasing force (ABF). In this Account, we review recent developments of algorithms aimed at mapping rugged free energy landscapes that correspond to complex processes of physical, chemical, and biological relevance. Through these developments, we have broadened the spectrum of applications of the popular ABF algorithm while improving its computational efficiency, notably for multidimensional free energy calculations. One major algorithmic advance, coined meta-eABF, merges the key features of metadynamics and an extended Lagrangian variant of ABF (eABF) by simultaneously shaving the barriers and flooding the valleys of the free energy landscape, and it possesses a convergence rate up to 5-fold greater than those of other importance-sampling algorithms. Through faster convergence and enhanced ergodic properties, meta-eABF represents a significant step forward in the simulation of millisecond-time-scale events. Here we introduce extensions of the algorithm, notably its well-tempered and replica-exchange variants, which further boost the sampling efficiency while gaining in numerical stability, thus allowing quantum-mechanical/molecular-mechanical free energy calculations to be performed at a lower cost. As a paradigm to bridge microsecond simulations to millisecond events by means of free energy calculations, we have applied the ABF family of algorithms to decompose complex movements in molecular objects of biological and abiological nature. We show here how water lubricates the shuttling of an amide-based rotaxane by altering the mechanism that underlies the concerted translation and isomerization of the macrocycle. Introducing novel collective variables in a computational workflow for the rigorous determination of standard binding free energies, we predict with utmost accuracy the thermodynamics of protein–ligand reversible association. Because of their simplicity, versatility, and robust mathematical foundations, the algorithms of the ABF family represent an appealing option for the theoretical investigation of a broad range of problems relevant to physics, chemistry, and biology.
Lab-on-a-nanoparticle: the triple-channel optical properties of Mn-doped ZnS quantum dots (fluorescence, phosphorescence, and light scattering) are explored to develop a multidimensional sensing device for the discrimination of proteins in a lab-on-a-nanoparticle approach.
A robust importance-sampling algorithm for mapping free-energy surfaces over geometrical variables, coined meta-eABF, is introduced. This algorithm shaves the free-energy barriers and floods valleys by incorporating a history-dependent potential term in the extended adaptive biasing force (eABF) framework. Numerical applications on both toy models and nontrivial examples indicate that meta-eABF explores the free-energy surface significantly faster than either eABF or metadynamics (MtD) alone, without the need to stratify the reaction pathway. In some favorable cases, meta-eABF can be as much as five times faster than other importance-sampling algorithms. Many of the shortcomings inherent to eABF and MtD, like kinetic trapping in regions of configurational space already adequately sampled, the requirement of prior knowledge of the free-energy landscape to set up the simulation, are readily eliminated in meta-eABF. Meta-eABF, therefore, represents an appealing solution for a broad range of applications, especially when both eABF and MtD fail to achieve the desired result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.