Angiogenesis is critical to wound repair due to its role in providing oxygen and nutrients that are required to support the growth and function of reparative cells in damaged tissues. Adenosine receptors are claimed to be of paramount importance in driving wound angiogenesis by inducing VEGF. However, the underlying mechanisms for the regulation of adenosine receptors in VEGF as well as eNOS remain poorly understood. In the present study, we found that adenosine and the non-selective adenosine receptor agonists (NECA) induced tube formation in HMEC-1 in a dose-dependent manner. Adenosine or NECA (10 mmol/L) significantly augmented the number and length of the segments in comparison with the control. Simultaneously, VEGF and eNOS were significantly upregulated following the administration of 10 mmol/L NECA, while they were suppressed after A 2B AR genetic silencing and pharmacological inhibition by MRS1754. In addition, VEGF expression and eNOS bioavailability elimination significantly reduced the formation of capillary-like structures. Furthermore, the activation of A 2B AR by NECA significantly increased the intracellular cAMP levels and concomitant CREB phosphorylation, eventually leading to the production of VEGF in HMEC-1. However, the activated PKA-CREB pathway seemed to be invalidated in the induction of eNOS. Moreover, we found that the elicited PI3K/AKT signaling in response to the induction of NECA assisted in regulating eNOS but failed to impact on VEGF generation. In conclusion, the A 2B AR activation-driven angiogenesis via cAMP-PKA-CREB mediated VEGF production and PI3K/ AKT-dependent upregulation of eNOS in HMEC-1.
Elevated expression of survivin is observed in a number of cancer types, including human osteosarcoma. Few studies have demonstrated that survivin expression levels can be considered an independent predictor of survival for human osteosarcoma patients. However, the underlying molecular mechanisms of survivin in the process of human osteosarcoma carcinogenesis remain unclear. In the current study, we evaluated the biological effects of survivin knockdown on osteosarcoma cell proliferation, colony formation rate, and sensitivity to the chemotherapeutic agent cisplatin. We found that two different osteosarcoma cell lines, U2OS and Saos-2, have relatively higher expression levels of survivin, and specific knockdown of survivin resulted in a number of effects, such as inhibition of cell proliferation, decreased colony formation rate, cell cycle arrest at G2/M phase, induction of apoptosis, and increased sensitivity to cisplatin. In addition, we identified two microRNAs, miR-34a and miR-203, that are aberrantly expressed in human osteosarcoma cells and specifically target survivin by inhibiting its expression, therefore repressing osteosarcoma cell maintenance and proliferation.
The activity of Schwann cells (SWCs) is very important in trauma-induced nerve repair, and tumour necrosis factor-α (TNF-α) produced during tissue injury inhibits the viability of SWCs, which delays the repair of peripheral nerves. Loganin is an iridoid glycoside that has been shown to alleviate a variety of cytotoxic effects. In the current study, we evaluated the potential efficacy and the mechanism of action of loganin in TNF-α-induced cytotoxicity in SW10 cells. The experimental results indicated that loganin blocked TNF-α-mediated Smad2 activation, downregulated the expression of the G1 phase cell cycle inhibitor p15IN4KB, and upregulated the expression of the G1 phase cell cycle activator cyclin D1-CDK4/6, which upregulated E2F-1-dependent survivin expression and relieved TNF-α-induced apoptosis in SW10 cells. The protective effect of loganin on SWCs has potential medicinal value in the promotion of peripheral nerve repair and is significant for studies in the field of tissue regeneration.
Background Long non-coding RNAs (lncRNAs) have been implicated in initiation and development of numerous cancers. In the present study, we explored the role of lncRNAs AC007207.2 in osteosarcoma (OS). Methods Gene expression data of OS tissues was downloaded from the TARGET database. All the experiments were repeated at least three times. Data were analyzed using Perl, R, SPSS v12.0 and GraphPad Prism 8 software. Results We found lncRNA AC007207.2 was over-expressed in OS tissues and cell lines, and this phenomenon was associated with the worse prognosis of OS. Moreover, we found that AC007207.2 promotes proliferation and metastasis of OS cells via the miR-1306-5p/SIRT7 axis. Meanwhile, we found miR-1306-5p remarkably inhibits the malignant behavior of OS cells. Conclusion lncRNA AC007207.2 promotes progression of OS by upregulating SIRT7 expression through miR-1306-5p sponging. Thus, lncRNA AC007207.2/miR-1306-5p/SIRT7 axis is a promising therapeutic target for OS treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.