This study examines the relationship between the zonal oscillation of the western Pacific subtropical high (WPSH) and underneath sea surface temperature (SST) variation on a subseasonal time scale, associated with the persistent heavy rainfall (PHR) events over the middle and lower reaches of the Yangtze River valley (MLYRV) in China. A total of 76 PHR events and 45 break events in the summers of 1979-2011 are first identified over the MLYRV and divided into early and late summer groups. During the PHR events over the MLYRV for both groups, the WPSH stretches more westward, accompanied by the positive anomalies of the 500-hPa geopotential height field over East Asia and its coastal region south of 308N and the subseasonal warmer SSTs beneath the WPSH western edge. The time-lagged composites suggest that the WPSH western edge exhibits westward-then-eastward migration on a subseasonal time scale for the PHR events. The zonal changes of the WPSH and anomalous circulation and SST anomaly (SSTA) signals for break events is almost the mirror image of that for the PHR events for the early summer group. Accompanied by the WPSH westward extension, the increased incident solar radiation and decreased latent heat flux over the coastal region of East Asia contribute to the positive SSTAs beneath the western part of the WPSH. The positive SSTAs construct a convective instability that provides an adverse condition for maintaining the anticyclonic anomalies in the mid-lower levels. The persistent SST warming is also favorable to the transition of low-level circulation from anticyclonic to cyclonic anomalies over the coastal region. As a result, the WPSH withdraws eastward after the peak of the rainfall events over the MLYRV.
Seasonal variations of the synoptic-scale transient eddy activity (STEA) and the jet streams over East Asia are examined through analysis of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. Extracted from the 6-hourly upper-level wind fields, the distribution of the jet core numbers exhibits a distinct geographical border for the East Asian subtropical jet (EASJ) and the East Asian polar front jet (EAPJ) at the latitudes of the northern Tibetan Plateau (TP). In the cool seasons, two branches of the STEA and low-level baroclinicity exist over the East Asian landmass, accompanied by the two-jet state of the EASJ and EAPJ. In the warm seasons, a single jet pattern of the EASJ along the north flank of the TP is accompanied by the weakened STEA over the mid-to high latitudes of East Asia. Further analysis shows two distinct features of the seasonal variations of the STEA over East Asia, compared with that over the North Pacific. First, during the transitional period of April-June, the main STEA band over East Asia migrates northward dramatically, in conjunction with the EAPJ shifting in the same direction. Second, both the upperlevel STEA and the lower-level baroclinicity poleward of the TP are prosperous in spring. The relationship between the STEA, baroclinicity, vertical wind shear, and static stability in the EAPJ region in different seasons is further investigated. It is found that in addition to the time-mean wind fields, the rapid increase in the sensible heat flux poleward side of the TP region in spring and the associated boundary layer processes are partially responsible for the spring prosperity of the local baroclinicity and the STEA.
This study investigates the features of eastward extension of the South Asian high (SAH) and its connection with diabatic heating and rainfall over eastern Asia on subseasonal time scales. The causes of SAH’s eastward extension are examined by potential vorticity (PV) diagnosis with emphasis on the joint role of diabatic heating feedback and midlatitude wave train. The SAH’s eastward extension features eastward propagation of a wave train across Eurasia. Among the wave train, the migration of weak high from the western flank of the Tibetan Plateau (TP) to the east of TP contributes to the SAH’s eastward extension at the early stage. When the SAH approaches its easternmost position, a strong negative PV (positive geopotential height) center prevails to the east of the TP at 200 hPa. The associated anomalies in diabatic heating and rainfall include the anomalous heating and above-normal rainfall over the South China Sea (SCS) and subtropical western Pacific occurring 12 days before the SAH’s easternmost stretch, and then anomalous cooling and below-normal rainfall over the southern foot of the TP and southern China and heating and above-normal rainfall over the northern TP and northern China a week later. The anomalous heating and ascending motion over the northern TP and northern China act to increase negative PV locally at 200 hPa. The cooling and descending induce positive PV over southern China. The north–south dipolar structure of PV anomaly with the climatological northerly flow is favorable to southward advection of a negative PV anomaly at 200 hPa. The anomalous heating over the SCS–western Pacific helps to develop a below-normal rainfall condition over southern China via inducing a lower-level anomalous cyclone over coastal region. These processes are conducive to the SAH’s eastward extension at its later stage.
The zonal oscillation of the western Pacific subtropical high (WPSH) significantly influences the weather and climate over East Asia. This study investigates characteristics and mechanisms of the zonal variability of the WPSH on subseasonal time scales during summer by using a subseasonal WPSH (Sub-WPSH) index. Accompanied with the Sub-WPSH index, strong anticyclonic (cyclonic) anomalies are found over East Asia and coastal region south of 30°N on both 850 hPa and 500 hPa. During the positive period of the Sub-WPSH index, the WPSH extends more westward with enhanced precipitation over the Yangtze-Huaihe river basin and suppressed precipitation over the south of the Yangtze River in China. These precipitation anomalies can last for at least 1 week. While the subseasonal zonal variability of the WPSH is found to be closely associated with atmospheric teleconnections and local air-sea interaction, the mechanisms of the variability are different before and after mid-July (early and late summer). In both early and late summer, the East Asia/Pacific (EAP) wave train pattern affects the zonal shift of the WPSH by inducing a low-level anomalous anticyclonic/cyclonic circulation over the subtropical western Pacific, and this mechanism is stronger in late summer. In constrast, the influence of the Silk-Road pattern wave train is more important in the early summer. Meanwhile, in late summer, a stronger SST forcing on the atmosphere and a faster cycle of subseasonal variations of the WPSH are observed before the westward stretch of the WPSH, which could be related to the colder local SST anomalies. The westward stretch of the WPSH is accompanied by stronger anticyclonic anomalies in late summer.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.