In recent years, UAVs (Unmanned Aerial Vehicles) have been widely applied for data collection and image capture. Specifically, UAVs have been integrated with wireless sensor networks (WSNs) to create data collection platforms with high flexibility. However, most studies in this domain focus on system architecture and UAVs’ flight trajectory planning while event-related factors and other important issues are neglected. To address these challenges, we propose a cloud-assisted data gathering strategy for UAV-based WSN in the light of emerging events. We also provide a cloud-assisted approach for deriving UAV’s optimal flying and data acquisition sequence of a WSN cluster. We validate our approach through simulations and experiments. It has been proved that our methodology outperforms conventional approaches in terms of flying time, energy consumption, and integrity of data acquisition. We also conducted a real-world experiment using a UAV to collect data wirelessly from multiple clusters of sensor nodes for monitoring an emerging event, which are deployed in a farm. Compared against the traditional method, this proposed approach requires less than half the flying time and achieves almost perfect data integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.