EphA and EphB receptors preferentially bind ephrin-A and ephrin-B ligands, respectively, but EphA4 is exceptional for its ability to bind all ephrins. Here, we report the crystal structure of the EphA4 ligand-binding domain in complex with ephrin-B2, which represents the first structure of an EphA-ephrin-B interclass complex. A loose fit of the ephrin-B2 G-H loop in the EphA4 ligand-binding channel is consistent with a relatively weak binding affinity. Additional surface contacts also exist between EphA4 residues Gln 12 and Glu 14 and ephrin-B2. Mutation of Gln 12 and Glu 14 does not cause significant structural changes in EphA4 or changes in its affinity for ephrin-A ligands. However, the EphA4 mutant has ϳ10-fold reduced affinity for ephrin-B ligands, indicating that the surface contacts are critical for interclass but not intraclass ephrin binding. Thus, EphA4 uses different strategies to bind ephrin-A or ephrin-B ligands and achieve binding promiscuity. NMR characterization also suggests that the contacts of Gln 12 and Glu 14 with ephrin-B2 induce dynamic changes throughout the whole EphA4 ligand-binding domain. Our findings shed light on the distinctive features that enable the remarkable ligand binding promiscuity of EphA4 and suggest that diverse strategies are needed to effectively disrupt different Eph-ephrin complexes.The Eph receptors represent the largest family of tyrosine kinases, with 16 members divided into two classes, EphA and EphB. This subdivision is based on sequence conservation and binding preferences for their ligands, the ephrins, which are also divided into A and B classes. There are 10 EphA and 6 EphB receptors in mammals and chick, which can bind to six glycosylphosphatidylinositol-anchored ephrin-A ligands or three transmembrane ephrin-B ligands to mediate an extremely wide spectrum of biological responses through signals that are generated by both receptor and ligand activation (1, 2).All of the Eph receptors share the same modular structure, which comprises a juxtamembrane region, a tyrosine kinase domain, a C-terminal sterile ␣-motif domain, and a PDZbinding motif in the intracellular region. In the extracellular portion, there are an N-terminal ligand-binding domain, a cysteine-rich region, and two fibronectin type III repeats. The ephrin-binding domain is responsible for ligand recognition and is composed of 11 antiparallel -strands organized in a jellyroll -sandwich architecture, which is conserved among EphA and EphB receptors (3-8). The ectodomain of the ephrins is also conserved and consists of an eight-stranded -barrel with a Greek key topology, including several large and highly conserved functional loops, such as the G-H and C-D loops (4,5,8,9), which are very flexible in solution (10).The formation of a complex between an Eph receptor and an ephrin is centered around the insertion of the solventexposed ephrin G-H loop into the Eph receptor hydrophobic channel formed by the convex sheet of four -strands together with the D-E, J-K, and G-H loops. These interactions are...
Dicer or Dicer-like (DCL) protein is a catalytic component involved in microRNA (miRNA) or small interference RNA (siRNA) processing pathway, whose fragment structures have been partially solved. However, the structure and function of the unique DUF283 domain within dicer is largely unknown. Here we report the first structure of the DUF283 domain from the Arabidopsis thaliana DCL4. The DUF283 domain adopts an a-b-b-b-a topology and resembles the structural similarity to the doublestranded RNA-binding domain. Notably, the N-terminal a helix of DUF283 runs cross over the C-terminal a helix orthogonally, therefore, N-and C-termini of DUF283 are in close proximity. Biochemical analysis shows that the DUF283 domain of DCL4 displays weak dsRNA binding affinity and specifically binds to double-stranded RNA-binding domain 1 (dsRBD1) of Arabidopsis DRB4, whereas the DUF283 domain of DCL1 specifically binds to dsRBD2 of Arabidopsis HYL1. These data suggest a potential functional role of the Arabidopsis DUF283 domain in target selection in small RNA processing.
The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.
In this work, the polyethylene glycol (PEG) hybrid materials composited with substituted germanic heteropoly acids were prepared. Infrared (IR) spectra revealed that the Keggin structure characteristic of the GeM 11 VO 40 52 anion were present in the hybrid materials. At room temperature (208C), the conductivity of the products is 4.07 3 10 23 S cm 21 and 2.12 3 10 23 S cm 21 , respectively. The results indicated that the conductivity of substituted germanic heteropoly acids PEG hybrid materials is higher than that of the corresponding pure substituted germanic heteropoly acids. According to the experimental results, we proposed a possible mechanism of the proton conduction of the hybrid materials.
Peptides presented by Human leukocyte antigen (HLA) class-I molecules are generally 8–10 amino acids in length. However, the predominant pool of peptide fragments generated by proteasomes is less than 8 amino acids in length. Using the Epstein - Barr virus (EBV) Rta-epitope (ATIGTAMYK, residues 134–142) restricted by HLA-A*11:01 which generates a strong immunodominant response, we investigated the minimum length of a viral peptide that can constitute a viral epitope recognition by CD8 T cells. The results showed that Peripheral blood mononuclear cells (PBMCs) from healthy donors can be stimulated by a viral peptide fragment as short as 4-mer (AMYK), together with a 5-mer (ATIGT) to recapitulate the full length EBV Rta epitope. This was confirmed by generating crystals of the tetra-complex (2 peptides, HLA and β2-microglobulin). The solved crystal structure of HLA-A*11:01 in complex with these two short peptides revealed that they can bind in the same orientation similar to parental peptide (9-mer) and the free ends of two short peptides acquires a bulged conformation that is directed towards the T cell receptor. Our data shows that suboptimal length of 4-mer and 5-mer peptides can complement each other to form a stable peptide-MHC (pMHC) complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.