SUMMARY Breast cancer patients often develop locoregional or distant recurrence years after mastectomy. Understanding the mechanism of metastatic recurrence after dormancy is crucial for improving the cure rate for breast cancer. Here, we characterized a bone metastasis dormancy model to show that aberrant expression of vascular cell adhesion molecule 1 (VCAM-1), in part dependent on the activity of the NFκB pathway, promotes the transition from indolent micrometastasis to overt metastasis. By interacting with the cognate receptor integrin α4β1, VCAM-1 recruits monocytic osteoclast progenitors and elevates local osteoclast activity. Antibodies against VCAM-1 and integrin α4 effectively inhibit bone metastasis progression and preserve bone structure. These findings establish VCAM-1 as a promising target for the prevention and inhibition of metastatic recurrence in bone.
One of the most prominent features at the mid-blastula transition (MBT) observed in most embryos is a pause in cell cycle regulated by the nucleocytoplasmic (N/C) ratio. By using chromosome rearrangements to manipulate the DNA content of embryos, we determined that the threshold for this cell cycle pause in Drosophila is about 70% of the DNA content normally present at cycle 14. Embryos with DNA contents around this value show intermediate cell cycle behaviors. Some pause at cycle 14, some at cycle 15, and some form patches arrested in different mitotic cycles. A second feature at MBT is a massive increase in zygotic transcription and a parallel degradation of maternally supplied RNAs. To determine whether these changes in gene expression are governed by the same N/C ratio that controls cell cycle pause, we compared gene expression in haploid and diploid Drosophila embryos. We find that most maternal RNA degradation and most new transcription correlate with absolute time or developmental stage, and are timed independently of the N/C ratio. We identify a class of zygotically active genes whose expression depends on the N/C ratio and which are only expressed at cycle 15 in haploids. In embryos with patchy cell cycle behavior due to threshold DNA contents, the expression of these genes correlates tightly with the boundaries of the mitotic patches, suggesting either that the mechanism that pauses the mitotic cycle is the same as the one that measures the N/C ratio, or that it is tightly coupled to the mechanism controlling zygotic transcription of N/C ratio genes at the MBT.
SUMMARY In most metazoans, early embryonic development is characterized by rapid mitotic divisions that are controlled by maternal mRNAs and proteins that accumulate during oogenesis [1]. These rapid divisions pause at the Mid-Blastula Transition (MBT), coinciding with a dramatic increase in gene transcription and the degradation of a subset of maternal mRNAs [2, 3]. In Drosophila, the cell cycle pause is controlled by inhibitory phosphorylation of Cdk1, which in turn is driven by down-regulation of the activating Cdc25 phosphatases [4, 5]. Here, we show that the two Drosophila Cdc25 homologues, String and Twine, differ in their dynamics and that, contrary to current models [4], their down-regulations are not controlled by mRNA degradation but through different post-translational mechanisms. The degradation rate of String protein gradually increases during the late syncytial cycles in a manner dependent on the nuclear-to-cytoplasmic ratio and on the DNA replication checkpoints. Twine, on the other hand, is targeted for degradation at the onset of the MBT through a switch-like mechanism controlled like String by the nuclear-to-cytoplasmic ratio, but not requiring the DNA replication checkpoints. We demonstrate that post-translational control of Twine degradation ensures that the proper number of mitoses precede the MBT.
Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion of ,, and , CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic-T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.