Reinforced thermoplastic composite pipes (RTPs) have been widely used for oil and gas gathering and transportation. Polyvinylidene fluoride (PVDF) has the greatest potential as a thermoplastic liner of RTPs due to its excellent thermal and mechanical properties. However, permeation of gases is inevitable in the thermoplastic liner, which may lead to blister failure of the liner and damage the safe operation of the RTPs. In order to clarify the permeation behavior and obtain the permeation mechanism of the mixture gas (CH4/CO2/H2S) in PVDF at the normal service conditions, molecular simulations were carried out by combining the Grand Canonical Monte Carlo (GCMC) method and the Molecular Dynamics (MD) method. The simulated results showed that the solubility coefficients of gases increased with the decrease in temperature and the increase in pressure. The adsorption isotherms of all gases were consistent with the Langmuir model. The order of the adsorption concentration for different gases was H2S > CO2> CH4. The isosteric heats of gases at all the actual service conditions were much less than 42 kJ/mol, which indicated that the adsorption for all the gases belonged to the physical adsorption. Both of the diffusion and permeation coefficients increased with the increase in temperature and pressure. The diffusion belonged to Einstein diffusion and the diffusion coefficients of each gas followed the order of CH4 > CO2 > H2S. During the permeation process, the adsorption of gas molecules in PVDF exhibited selective aggregation, and most of them were adsorbed in the low potential energy region of PVDF cell. The mixed-gas molecules vibrated within the hole of PVDF at relatively low temperature and pressure. As the temperature and pressure increase, the gas molecules jumped into the neighboring holes occasionally and then dwelled in the holes, moving around their equilibrium positions.
The liner of reinforced thermoplastic composite pipes (RTPs) used for oil and gas gathering and transportation experienced blister failure due to gas permeation. Few reports have appeared on the problem of gas permeation in thermoplastics with absorbed crude oil. Accordingly, the permeability of CH4 in polyvinylidene fluoride (PVDF) containing crude oil was studied at the normal service conditions by molecular simulations. The results showed that the solubility coefficients of CH4 in PVDF containing crude oil were much lower than those in pure PVDF. It can be concluded that the crude oil molecules absorbed into PVDF occupied certain adsorption sites, resulting in a decrease in the adsorption capacity of CH4 molecules in PVDF. The diffusion coefficients of CH4 in oil-containing PVDF were significantly greater than in PVDF. This is because the absorption of oil molecules leads to the volume swelling of PVDF and then increases the free volume for diffusion. The permeation process showed that CH4 molecules were selective-aggregate adsorbed in the region with low potential energy in oil-containing PVDF firstly, and then they vibrated within the holes of PVDF containing oil in most cases and jumped into the neighboring holes at high temperatures and pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.