Crosstalk between oocytes and surrounding somatic cells is crucial for mammalian oogenesis, but the structural mechanisms on oocytes to control female reproduction remain unknown. Here we combine endogenous-fluorescent tracing mouse models with a high-resolution live-cell imaging system to characterize oocyte-derived mushroom-like microvilli (Oo-Mvi), which mediate germ-somatic communication in mice. We perform 3D live-cell imaging to show that Oo-Mvi exhibit cellular characteristics that fit an exocrine function for signaling communication. We find that deletion of the microvilli-forming gene Radixin in oocytes leads to the loss of Oo-Mvi in ovaries, and causes a series of abnormalities in ovarian development, resulting in shortened reproductive lifespan in females. Mechanistically, we find that Oo-Mvi enrich oocyte-secreted factors and control their release, resulting in optimal selection of ovarian follicles. Taken together, our data show that the Oo-Mvi system controls the female reproductive lifespan by governing the fate of follicles.
In the mammalian ovaries, dormant primordial follicles represent the reproductive reserve of individual females. Recently, stimulating the activation of primordial follicles in vitro has been practiced, making the utilization of those dormant follicles to treat female infertility possible. However, there are still lacks of effective upstream molecule and strategy to elevate follicle activation in vivo. In the current study, we revealed that growth factor EGF improved a transiently primordial follicle activation in mice by elevating the CDC42-PI3K signaling activity, and EGF treatment also improved the activation and development of human follicles in ovarian cortical pieces. Using a liquid-solid phase transition bio-gel as a carrier, an efficient in vivo activation system was established by ovarian topical EGF administration to living mice. We found that EGF treatment led to an increase of primordial follicle activation in short time but had no effect on long-term fertility in females. By establishing an inducible premature ovarian insufficiency (POI) mouse model through selectively ablating growing follicles in Zp3-Cre;iDTR mice, we further revealed that our in vivo EGF treatment system improved primordial follicle activation and ovulation of POI ovaries significantly. Taken together, our results revealed that in situ ovarian EGF administration could improve the activation of primordial follicles in living animals, and manipulating activation and development of primordial follicles in vivo might be an efficient approach to improve reproductive health in women.
Background
Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive.
Results
In the current study, by deleting the key secreted factor KIT ligand from preGCs and analyzing the follicle cell developmental dynamics, we revealed distinct patterns of activation and growth associated with the two waves of follicles in mouse ovary. Our results confirmed that activation of adult wave follicles is initiated by somatic preGCs and dependent on the KIT ligand. By contrast, activation of first wave follicles, which are awakened from germ cells before follicle formation, can occur in the absence of preGC-secreted KIT ligand in postnatal ovaries and appears to be oocyte-initiated. We also found that the asynchronous activity of phosphatidylinositol 3 kinases (PI3K) signaling and meiotic process in embryonic germ cells lead to the follicle heterogeneity in postnatal ovaries. In addition, we supplied evidence that the time sequence of embryonic germ cell development and its related first wave follicle growth are correlated to the time of puberty onset in females.
Conclusion
Taken together, our study provides evidence that asynchronous development of embryonic oocytes leads to the heterogeneity of postnatal ovarian follicle activation and development, and affects the timing of onset of puberty in females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.