Epstein-Barr virus (EBV) is an oncogenic virus that infects more than 90% of the world's population. The proteins and miRNAs encoded by EBV are involved in multiple human malignancies. Recently R-resistance RNA-seq demonstrated that EBV-encoded circular RNAs. The current research aims to explore their functions in EBV-associated malignancies. Total 56 miRNAs were sponged by circRNAome. 24 and 9 in EBV host B and epithelial cells out of 56 miRNAs were detectable by miRNAseq. 18 and 5 miRNAs were down-regulated in both types of host cells, respectively, after EBV infection. The network between five miRNAs and their targets included 1414 genes, 1419 nodes, and 2423 edges. These targets were enriched in multiple categories, and most of them were up-regulated in EBV-infected cells. These data represented the first report that EBV circRNAs could sponge the miRNAs to promote the up-regulated expression of their targets, involving in malignancies associated with EBV.
Overuse and misuse of antibiotics leads to rapid evolution of antibiotic-resistant bacteria and antibiotic resistance genes. Klebsiella pneumoniae has become the most common pathogenic bacterium accountable for nosocomial infections due to its high virulence factor and general occurrence of resistance to most antibiotics. The β-lactamase signaling pathway has been suggested to be involved in antibiotic resistance against β-lactams in Klebsiella pneumoniae. In the present study, the molecular mechanism of the antibiotic resistance of Klebsiella pneumoniae was investigated and the results indicated involvement of the β-arrestin recruitment-induced β-lactamase signaling pathway. Antimicrobial susceptibility of Klebsiella pneumoniae was assessed using automated systems and extended-spectrum β-lactamase (ESBL) and β-arrestin expression levels in Klebsiella pneumoniae were analyzed by reverse-transcription quantitative PCR. β-lactam resistance in Klebsiella pneumoniae was determined using β-lactam agar screening plates. The results demonstrated that β-arrestin recruitment was increased in Klebsiella pneumoniae with antibiotic resistance (AR-K.P.) compared with that in the native Klebsiella pneumoniae strain (NB-K.P.). Increased production of ESBL was observed in AR-K.P. after treatment with the β-lactam penicillin. Of note, inhibition of β-arrestin recruitment significantly suppressed ESBL expression in AR-K.P. and in addition, genes encoding β-arrestin and ESBL were upregulated in Klebsiella pneumoniae. Restoration of endogenous β-arrestin markedly increased antibiotic resistance of Klebsiella pneumoniae to β-lactam. Knockdown of endogenous β-arrestin downregulated antibiotic resistance genes and promoted the inhibitory effects of β-lactam antibiotic treatment on Klebsiella pneumoniae growth. In conclusion, the present study identified that β-arrestin recruitment was associated with growth and resistance to β-lactams, which suggested that β-arrestin regulating ESBL expression may be a potential target for addressing antibiotic resistance to β-lactams in Klebsiella pneumoniae.
Background: This study aimed to explore effective education method to improve influenza vaccine uptake rate. Methods: Meta-analysis of Randomized Clinical Trials was conducted in this study including subgroup analysis and publication bias test. Electronic databases comprised PubMed, EBSCO, Elsevier, Springer, Wiley, and Cochrane were searched for studies published up to Oct 8, 2019. Results: Influenza vaccination was significantly different in massages or letters intervention group (OR=1.30, 95%CI: 1.05-1.61). No heterogeneity and publication bias existed in this meta-analysis (I 2=43.60%, P=0.131, Pbegg =0.754, Pegger=0.051). Conclusion: Education by messages and letters was effective according to this study. Education messages could be more efficacy combined with easer vaccine access.
Objective. To develop a simple and rapid high-performance liquid chromatography (HPLC) method for measuring moxifloxacin concentration in human plasma. Methods. Following a single step liquid-liquid extraction, analytes along with an internal standard (IS) were separated using an isocratic mobile phase of 0.1% triethylamine (adjusted pH to 4.8 with phosphoric acid)/acetonitrile (80/20, v/v) at flow rate of 1 mL/min on reverse phase Kromasil C18 column (250 mm × 4.6 mm, 5 μm) at room temperature. Results. Total analytical run time for selecting moxifloxacin was 15 min. The assays exhibited good linearity (r 2 = 0.9998) over the studied range of 25 to 5000 ng/mL. The absolute recovery rate of low, medium, and high concentrations were 69.88%, 78.86%, and 78.51%, respectively. The relative recovery rates were 98.50%, 96.61%, and 101.79%, respectively. Coefficient of variation and error at both of the intraday and interday assessments were less than 4.7%. Conclusions. The results indicated that this method is a simple, rapid, precise and accurate assay for the determination of moxifloxacin concentrations in human plasma. This validated method is sensitive and reproducible enough to be used in pharmacokinetic studies.
Overuse and misuse of antibiotics leads to antibiotic resistance which has become a significant public health concern. Klebsiella pneumoniae is the most common pathogenic bacteria underlying nosocomial infections due to the expression of virulence factors and occurrence of antibiotic resistance. Evidence indicates that β-lactamase is involved in the antibiotic resistance of Klebsiella pneumoniae to β-lactam antibiotics. The aim of the present study was to investigate the association between the molecular biological mechanisms of antibiotic resistance of Klebsiella pneumoniae and extended-spectrum β-lactamase (ESBL). In order to assess temporal trends in prevalence and antimicrobial susceptibility, Klebsiella pneumoniae bacteria were isolated and the ESBL expression level was analyzed. Susceptibility tests were performed using automated systems. The β-lactam-resistance in Klebsiella pneumoniae was assessed by the β-lactam agar screen plate and respective MIC values were evaluated using E-test strips. The confirmatory disk diffusion methods were applied for phenotypic identification of the ESBL production of Klebsiella pneumoniae. The results showed that Klebsiella pneumoniae bacteria exhibited higher ESBL production after treatment with β-lactam compared to the control. The ESBL gene expression was upregulated in Klebsiella pneumoniae after treatment with β-lactam. Results identified that penicillin-binding proteins (PBPs) were associated with the growth and resistance to β-lactams. Zinc finger nuclease markedly inhibited the antibiotic resistance of Klebsiella pneumoniae to β-lactam. PBP knockdown abolished the inhibitory effects of zinc finger nuclease on the growth of Klebsiella pneumoniae induced by β-lactam antibiotic treatment. In conclusion, these results suggest that the resistance of Klebsiella pneumoniae bacteria to antimicrobial drugs is through the ESBL signaling pathway, which indicates that ESBL may be a potential target for abolishing resistance to β-lactam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.