A series of CFD RANS simulations are presented for Wigley hulls of two freeboard heights progressing with forward speed in waves. Free surface effects are captured using the Volume of Fluid (VOF) method embedded in open source software OpenFOAM. Comparisons of heave, pitch motions and added resistance of the first Wigley model against the experiments of Kashiwagi (2013) confirm the numerical validity of the hydrodynamic modelling approach. Further simulations for the lower-freeboard Wigley model reveal that the highest green water impact on decks appears in way of λ / L = 1.3 and at the highest instantaneous pitch amplitude where the water propagates far downstream and across the deck. The simulations also demonstrate that the green water events are associated with air bubble entrapment.
Bubbly liquids are widely present in the natural environment and industrial fields, such as seawater near the ocean bottom, the multiphase flow in petroleum reservoirs, and the blood with bubbles resulting in decompression sickness. Therefore, accurate measurement of the gas content is of great significance for hydroacoustic physics, oil and gas resources exploration, and disease prevention and diagnosis. Trace bubbles in liquids can lead to considerable changes in the acoustic properties of gas–liquid two-phase media. Acoustic measurements can therefore be applied for trace bubble detection. This study derived the reflection coefficient of acoustic waves propagating in a sandwich layering model with liquid, bubbly liquid, and liquid. The influences of gas contents on the reflection coefficient at the layer interface were analyzed based on theoretical calculations. It was revealed that the magnitude of the reflection coefficient and the frequency interval between its valleys have a quantitative correlation with the gas contents. Thus, a novel means to detect the contents of trace bubbles was proposed by evaluating the reflection coefficients. The reflection features of a thin layer with bubbly liquid were then studied through experiments. It was validated by acoustical measurements and theories that the reflection coefficient is considerably sensitive to the change of gas contents as long as the gas content is tiny. With the increasing gas content, the maximum value of the reflection coefficient increases; meanwhile, the frequency intervals between the valleys become smaller. However, when the gas content is extensive enough, e.g., greater than 1%, the effect of the change of gas content on the reflection coefficient becomes inapparent. In that case, it is not easy to measure the gas content by the acoustic reflection signals with satisfying precision. This proposed method has potential applications for the detection of trace gas bubble content in several scenarios, e.g., decompression illness prevention and diagnosis.
Modeling of the drill-string acoustic channel has long been an important topic in downhole telemetry. The propagation of drill-string guided waves in the borehole contains excitation, attenuation, and mode conversion issues that have not been considered by existing modeling methods. In this paper, we formulate a hybrid modeling method to investigate the response characteristics of the fundamental-mode drill-string wave in various borehole environments. This hybrid method provides channel functions, including transmitting and receiving deployments, periodicity of the structure, and formation property changes. The essential physics of the drill-string wave propagation is captured with a 1-D model. The analytical solutions of the wavefield in multilayered cylindrical structures are introduced into a propagation matrix to express drill-string-wave interactions with the borehole environments. The effectiveness of the proposed method is confirmed through comparison with the finite-difference method. In addition, by designing numerical models, we investigate the conversion effect of the drill-string wave at the tool joint. We demonstrate that the conversion intensity of the drill-string wave is positively correlated not only with the cross-sectional area of the tool joint but also with the wave impedance of the outer formation. Hard formation outside the borehole reduces the energy leakage while intensifying the conversion of drill-string waves to Stoneley waves, and the opposite is true for the drill string in an infinite fluid. The converted Stoneley waves interfere with the drill-string waves, resulting in variations of bandgap distribution, which challenges the reliability of the data transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.