Medical research shows that eye movement disorders are related to many kinds of neurological diseases. Eye movement characteristics can be used as biomarkers of Parkinson's disease, Alzheimer's disease (AD), schizophrenia, and other diseases. However, due to the unknown medical mechanism of some diseases, it is difficult to establish an intuitive correspondence between eye movement characteristics and diseases. In this paper, we propose a disease classification method based on decision tree and random forest (RF). First, a variety of experimental schemes are designed to obtain eye movement images, and information such as pupil position and area is extracted as original features. Second, with the original features as training samples, the long short-term memory (LSTM) network is used to build classifiers, and the classification results of the samples are regarded as the evolutionary features. After that, multiple decision trees are built according to the C4.5 rules based on the evolutionary features. Finally, a RF is constructed with these decision trees, and the results of disease classification are determined by voting. Experiments show that the RF method has good robustness and its classification accuracy is significantly better than the performance of previous classifiers. This study shows that the application of advanced artificial intelligence (AI) technology in the pathological analysis of eye movement has obvious advantages and good prospects.
Medical research confirms that eye movement abnormalities are related to a variety of psychological activities, mental disorders and physical diseases. However, as the specific manifestations of various diseases in terms of eye movement disorders remain unclear, the accurate diagnosis of diseases according to eye movement is difficult. In this paper, a deep neural network (DNN) method is employed to establish a disease discrimination model according to eye movement. First, multiple eye-tracking experiments are designed to obtain eye images. Second, pupil characteristics, including position and size, are extracted, and the feature vectors of eye movement are obtained from the normalized pupil information. Based on a long short-term memory (LSTM) network, a classifier that corresponds to each feature, which is referred to as a weak classifier, is built. The experimental samples are preclassified, and the classification ability of each weak classifier for different diseases is also calculated. Last, a strong classifier is achieved for disease discrimination by synthesizing all the weak classifiers and their classification abilities. By classification testing for three categories of healthy controls, brain injury patients and vertigo patients, the experimental results demonstrated the efficiency of this method. With the deep learning method, more medical information can be excavated from eye movement to improve the values in disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.