Monolayer molybdenum disulfide (MoS2) has attracted great interest due to its potential applications in electronics and optoelectronics. Ideally, single-crystal growth over a large area is necessary to preserve its intrinsic figure of merit but is very challenging to achieve. Here, we report an oxygen-assisted chemical vapor deposition method for growth of single-crystal monolayer MoS2. We found that the growth of MoS2 domains can be greatly improved by introducing a small amount of oxygen into the growth environment. Triangular monolayer MoS2 domains can be achieved with sizes up to ∼350 μm and a room-temperature mobility up to ∼90 cm(2)/(V·s) on SiO2. The role of oxygen is not only to effectively prevent the poisoning of precursors but also to eliminate defects during the growth. Our work provides an advanced method for high-quality single-crystal monolayer MoS2 growth.
In this Letter, we report measurements of the coupling between Dirac fermion quasiparticles (DFQs) and phonons on the (001) surface of the strong topological insulator Bi2Se3. While most contemporary investigations of this coupling have involved examining the temperature dependence of the DFQ self-energy via angle-resolved photoemission spectroscopy measurements, we employ inelastic helium-atom scattering to explore, for the first time, this coupling from the phonon perspective. Using a Hilbert transform, we are able to obtain the imaginary part of the phonon self-energy associated with a dispersive surface-phonon branch identified in our previous work [Phys. Rev. Lett. 107, 186102 (2011)] as having strong interactions with the DFQs. From this imaginary part of the self-energy we obtain a branch-specific electron-phonon coupling constant of 0.43, which is stronger than the values reported from the angle-resolved photoemission spectroscopy measurements.
Monolayer SnP3 is a novel two-dimensional (2D) semiconductor material with high carrier mobility and large optical absorption coefficient, implying its potential applications in the photovoltaic and thermoelectric (TE) fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.