The resolvase protein of the gamma delta transposon is a site‐specific recombinase that acts by a concerted break‐and‐join mechanism. To analyse the role of individual resolvase subunits in DNA strand cleavage, we have directed the binding of catalytic mutants to specific recombination crossover sites or half‐sites. Our results demonstrate that the resolvase subunit bound at the half‐site proximal to each scissile phosphodiester bond provides the Ser10 nucleophile and Arg8, Arg68 and Arg71 residues essential for cleavage and covalent attachment to the DNA. Several other residues near the presumptive active site are also shown to act in cis. Double‐strand cleavage at one crossover site can proceed independently of cleavage at the other site, although interactions between the resolvase dimers bound at the two crossover sites remain essential. An appropriately oriented heterodimer of active and inactive protomers can in most cases mediate either a ‘top’ or ‘bottom’ single‐strand cleavage, suggesting that there is no obligatory order of strand cleavages. Top‐strand cleavage is associated with the topoisomerase I activity of resolvase, suggesting that a functional asymmetry may be imposed on the crossover site by the structure of the active synapse.
A novel photoelectrode based on ZnS/CdTe/Mn-CdS/ZnS-sensitized three-dimensional macroporous ZnO nanosheet (NS) has been prepared by electrodeposition and successive ion layer adsorption and reaction (SILAR) method. The photoelectrode performances were significantly improved through the coupling of the core/shell CdTe/Mn-CdS quantum dots (QDs) with ZnO NS, and the introduction of the ZnS layer as a potential barrier. The photocurrent density systematically increases from ZnO NS (0.45 mA/cm(2)), CdTe/Mn-CdS/ZnO NS (4.98 mA/cm(2)), to ZnS/CdTe/Mn-CdS/ZnS/ZnO (6.23 mA/cm(2)) under the irradiation of AM 1.5G simulated sunlight. More important, the ZnS/CdTe/Mn-CdS/ZnS-sensitized ZnO NS photoelectrode provides a remarkable photoelectrochemical cell efficiency of 4.20% at -0.39 V vs Ag/AgCl.
Single nucleotide polymorphisms (SNPs) are the most fundamental internal causes for many genetic diseases. However, the location information on SNPs in a specific DNA sequence is not well acquired through current SNPs detection methods, except for accurate DNA sequencing. Here we report a fluorescence enhancement phenomenon in the process of two silver nanoclusters (AgNCs) approaching closely to form a nanocluster dimer (NCD). The fluorescence intensity is sensitive to the distance between two AgNCs; therefore, the NCD lights into different fluorescence intensities upon binding SNPs targets with mismatched bases at different positions. Interestingly, the fluorescence intensities of the NCD decrease linearly when the position of single mismatched base moves gradually from the middle point to the end of the target DNA. The NCD is a single probe acting as a universal platform to pinpoint various SNP positions. With this single probe, we cannot only identify the existence of SNPs but also pinpoint the location of a specific single mismatched base in the adjacent positions. This strategy is feasible to detect specific gene point mutations in clinical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.