We fit the spectral energy distributions (SEDs) of a GeV-TeV FSRQ sample with the leptonic model. Their γ min of the relativistic electron distributions, which significantly affect the estimates of the jet properties, are constrained, with a typical value of ∼ 48. Their jet power, magnetized parameter, radiation efficiency, and jet production/radiation rates per central black hole (BH) mass are derived and compared to that of BL Lacs. We show that the FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lacs, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lacs. We also show that the jet power is correlated with the cavity kinetic power, and the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs and the kinetic energy of cold protons in the jets may be crucial for cavity kinetic energy of BL Lacs. We suggest that the dominating formation mechanism of FSRQ jets may be the BZ process, but BL Lac jets may be produced via the BP and/or BZ processes, depending on the structures and accretion rates of accretion disks.
A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal-free photocatalysts for visible-light-regulated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Screening of diverse heteroatom-doped CDs suggested that the P- and S-doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET-RAFT polymerization of various monomers with temporal control, narrow dispersity (Đ≈1.04), and chain-end fidelity was achieved. Besides, it was demonstrated that the CD-catalyzed PET-RAFT polymerization was effectively performed under natural solar irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.