Purpose This two-part, first-in-human study was initiated in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors (FGFRs) to determine the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), and the schedule, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of oral BGJ398, a selective FGFR1-3 tyrosine kinase inhibitor. Patients and Methods Adult patients were treated with escalating dosages of BGJ398 5 to 150 mg once daily or 50 mg twice daily continuously in 28-day cycles. During expansion at the MTD, patients with FGFR1-amplified squamous cell non-small-cell lung cancer (sqNSCLC; arm 1) or other solid tumors with FGFR genetic alterations (mutations/amplifications/fusions) received BGJ398 daily on a continuous schedule (arm 2), or on a 3-weeks-on/1-week-off schedule (arm 3). Results Data in 132 patients from the escalation and expansion arms are reported (May 15, 2015, cutoff). The MTD, 125 mg daily, was determined on the basis of dose-limiting toxicities in four patients (100 mg, grade 3 aminotransferase elevations [n = 1]; 125 mg, hyperphosphatemia [n = 1]; 150 mg, grade 1 corneal toxicity [n = 1] and grade 3 aminotransferase elevations [n = 1]). Common adverse events in patients treated at the MTD (n = 57) included hyperphosphatemia (82.5%), constipation (50.9%), decreased appetite (45.6%), and stomatitis (45.6%). A similar safety profile was observed using the 3-weeks-on/1-week-off schedule (RP2D). However, adverse event-related dose adjustments/interruptions were less frequent with the 3-weeks-on/1-week-off (50.0%) versus the continuous (73.7%) schedule. Antitumor activity (seven partial responses [six confirmed]) was demonstrated with BGJ398 doses ≥ 100 mg in patients with FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancer. Conclusion BGJ398 at the MTD/RP2D had a tolerable and manageable safety profile and showed antitumor activity in several tumor types, including FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.