The Drosophila wing was proposed to be a taste organ more than 35 years ago, but there has been remarkably little study of its role in chemoreception. We carry out a differential RNA-seq analysis of a row of sensilla on the anterior wing margin and find expression of many genes associated with pheromone and chemical perception. To ask whether these sensilla might receive pheromonal input, we devised a dye-transfer paradigm and found that large, hydrophobic molecules comparable to pheromones can be transferred from one fly to the wing margin of another. One gene, Ionotropic receptor ( IR ) 52a , is coexpressed in neurons of these sensilla with fruitless , a marker of sexual circuitry; IR52a is also expressed in legs. Mutation of IR52a and optogenetic silencing of IR52a + neurons decrease levels of male sexual behavior. Optogenetic activation of IR52a + neurons induces males to show courtship toward other males and, remarkably, toward females of another species. Surprisingly, IR52a is also required in females for normal sexual behavior. Optogenetic activation of IR52a + neurons in mated females induces copulation, which normally occurs at very low levels. Unlike other chemoreceptors that act in males to inhibit male–male interactions and promote male–female interactions, IR52a acts in both males and females, and can promote male–male as well as male–female interactions. Moreover, IR52a + neurons can override the circuitry that normally suppresses sexual behavior toward unproductive targets. Circuit mapping and Ca 2+ imaging using the trans -Tango system reveals second-order projections of IR52a + neurons in the subesophageal zone (SEZ), some of which are sexually dimorphic. Optogenetic activation of IR52a + neurons in the wing activates second-order projections in the SEZ. Taken together, this study provides a molecular description of the chemosensory sensilla of a greatly understudied taste organ and defines a gene that regulates the sexual circuitry of the fly.
Methylation is an important issue in gene expression regulation and also in the fields of genetics and reproduction. In this study, we created fat-1 transgenic sheep, investigated the fine-mapping and the modulatory mechanisms of promoter methylation. Sheep fetal fibroblasts were transfected by pCAG-fat1-IRES-EGFP. Monoclonal cell line was screened as nuclear donor and carried out nuclear transfer (441 transgenic cloned embryos, 52 synchronism recipient sheep). Six offsprings were obtained. Expressions of exogenous genes fat-1 and EGFP were detectable in 10 examined tissues and upregulated omega-3 fatty acid content. Interestingly, more or less EGFP negative cells were detectable in the positive transgenic fetal skin cells. EGFP negative and positive cells were sorted by flow cytometry, and their methylation status in the whole promoter region (1701 nt) were investigated by bisulphate sequencing. The fine-mapping of methylation in CAG promoter were proposed. The results suggested that exogenous gene expression was determined by the methylation status from 721–1346 nt and modulated by methylation levels at 101, 108 and 115 nt sites in CAG promoter. To clarify the regulatory mechanism of methylation, examination of four DNA methyltransferases (DNMTs) demonstrated that hypermethylation of CAG promoter is mainly maintained by DNMT 1 in EGFP negative cells. Furthermore, investigation of the cell surface antigen CD34, CD45 and CD166 indicated that EGFP positive and negative cells belong to different types. The present study systematically clarified methylation status of CAG promoter in transgenic sheep and regulatory mechanism, which will provide research strategies for gene expression regulation in transgenic animals.
Background Although significant progress has been made in understanding the mechanisms of steatosis and insulin resistance, the physiological functions of the epigenetic regulators in these processes remain largely elusive. Methods Hepatocyte-specific Arid1a knockout mice were administrated with high-fat diet (HFD) for 12 weeks, then insulin sensitivity was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT). The metabolism-related indicators were determined by employing a variety of biological methods, including histology, real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blotting assay, Chromatin immunoprecipitation (ChIP), RNA-seq and assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). Findings Hepatocyte-specific Arid1a deletion significantly increases susceptibility to develop hepatic steatosis, insulin resistance and inflammation in mice fed a HFD. In vitro , Arid1a deletion in isolated hepatocytes directly leads to free fatty acid-induced lipid accumulation and insulin resistance. Mechanically, Arid1a deficiency impairs fatty acid oxidation by downregulating PPARα and altering the epigenetic landscape of some metabolism genes. Interpretation These findings reveal that targeting Arid1a might be a promising therapeutic strategy for liver steatosis and insulin resistance. Fund This work was supported by National Natural Science Foundation of China (81672772 and 81472621), China National Science and Technology Major Project for Prevention and Treatment of Infectious Diseases (No.2017ZX 10203207) and National Program on Key Research Project of China (grant no. 2016YFC0902701).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.