The paper investigates the stability and passivity analysis problems for a class of uncertain neural networks with time-delay via delta operator approach. Both the parameter uncertainty and the generalized activation functions are considered in this paper. By constructing an appropriate Lyapunov-Krasovskii functional, some new stability and passivity conditions are obtained in terms of linear matrix inequalities (LMIs). The main characteristic of this paper is to obtain novel stability and passivity analysis criteria for uncertain neural networks with time-delay in the delta operator system framework. A numerical example is presented to demonstrate the effectiveness of the proposed results.
The stability problem is investigated for a class of uncertain networks of neutral type with leakage, time-varying discrete, and distributed delays. Both the parameter uncertainty and the generalized activation functions are considered in this paper. New stability results are achieved by constructing an appropriate Lyapunov-Krasovskii functional and employing the free weighting matrices and the linear matrix inequality (LMI) method. Some numerical examples are given to show the effectiveness and less conservatism of the proposed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.