The authors investigate how the global monsoon (GM) precipitation responds to the external and anthropogenic forcing in the last millennium by analyzing a pair of control and forced millennium simulations with the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled ocean-atmosphere model. The forced run, which includes the solar, volcanic, and greenhouse gas forcing, captures the major modes of precipitation climatology comparably well when contrasted with those captured by the NCEP reanalysis. The strength of the modeled GM precipitation in the forced run exhibits a significant quasibicentennial oscillation. Over the past 1000 yr, the simulated GM precipitation was weak during the Little Ice Age (1450-1850) with the three weakest periods occurring around 1460, 1685, and 1800, which fell in, respectively, the Spörer Minimum, Maunder Minimum, and Dalton Minimum periods of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variations in the total amount of effective solar radiative forcing reinforce the thermal contrasts both between the ocean and continent and between the Northern and Southern Hemispheres resulting in the millennium-scale variation and the quasi-bicentennial oscillation in the GM index. The prominent upward trend in the GM precipitation occurring in the last century and the notable strengthening of the global monsoon in the last 30 yr (1961-90) appear unprecedented and are due possibly in part to the increase of atmospheric carbon dioxide concentration, though the authors' simulations of the effects from recent warming may be overestimated without considering the negative feedbacks from aerosols. The simulated change of GM in the last 30 yr has a spatial pattern that differs from that during the Medieval Warm Period, suggesting that global warming that arises from the increases of greenhouse gases and the input solar forcing may have different effects on the characteristics of GM precipitation. It is further noted that GM strength has good relational coherence with the temperature difference between the Northern and Southern Hemispheres, and that on centennial time scales the GM strength responds more directly to the effective solar forcing than the concurrent forced response in global-mean surface temperature.
The location change of the westerly jet core at upper troposphere in June and July is investigated by using the NCEP/NCAR reanalysis data. The results show that the location of the westerly jet core changes rapidly from 140°E to 90°E during 35th–39th pentads, which corresponds to the plum rain period over East Asia. The location change of the jet core is actually the relative intensity change of the different westerly jet centers. The meridional temperature contrast in the troposphere is associated with the rapid location change of the jet core. The diabatic heating changes are the primary factor determining the seasonal evolution of the westerly jet core over East Asia.
Global-mean surface temperature has experienced fast warming during 1985–98 but stabilized during 1999–2013, especially in boreal winter. Climate changes over East Asia between the two warming periods and the associated mechanisms have not been fully understood. Analyses of observation and reanalysis data show that winter precipitation has decreased (increased) over southern (northeastern) China from 1985–98 to 1999–2013. Winds at 300 hPa over East Asia strengthened during 1999–2013 around 30°–47.5°N but weakened to the north and south of it. This change pattern caused the East Asian polar front jet (EAPJ) and the East Asian subtropical jet (EASJ) to shift, respectively, equatorward and poleward during 1999–2013. Associated with these jet displacements, the Siberian high enhanced and the East Asian trough shifted westward. The enhanced Siberian high strengthened the East Asian winter monsoon and weakened southwesterly winds over the South China Sea, leading to precipitation decreases over southern China. The westward shift of the East Asian trough enhanced convergence and precipitation over northeastern China. A combination of a negative phase of the interdecadal Pacific oscillation and a positive phase of the Atlantic multidecadal oscillation during 1999–2013 resulted in significant tropospheric warming over the low and high latitudes and cooling over the midlatitudes of East Asia. These changes enhanced the meridional temperature gradient and thus westerlies over the region between the two jets but weakened them to the south and north of it, thereby contributing to the wind change patterns and the jet displacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.