Hybrid superconductor-semiconductor structures attract increasing attention owing to a variety of potential applications in quantum computing devices. They can serve to the realization of topological superconducting systems, as well as gate-tunable superconducting quantum bits. Here we combine a SiGe/Ge/SiGe quantum-well heterostructure hosting high-mobility two-dimensional holes and aluminum superconducting leads to realize prototypical hybrid devices, such as Josephson field-effect transistors (JoFETs) and superconducting quantum interference devices (SQUIDs). We observe gate-controlled supercurrent transport with Ge channels as long as one micrometer and 1 arXiv:1810.05012v2 [cond-mat.mes-hall] 23 Oct 2018 estimate the induced superconducting gap from tunnel spectroscopy measurements in superconducting point-contact devices. Transmission electron microscopy reveals the diffusion of Ge into the aluminum contacts, whereas no aluminum is detected in the Ge channel.Modern quantum nanoelectronics takes increasing advantage of newly synthesized hybrid superconductor-semiconductor (S-Sm) interfaces. 1 One of the main motivations is the search for Majorana zero modes that are predicted to appear in a topological superconductor. 2-4 A Josephson field effect transistor (JoFET) is one of the basic devices. It consists of a gatetunable semiconductor channel allowing Cooper-pair exchange between two superconducting contacts mediated by the superconducting proximity effect. 5 Gate control on the Josephson coupling has eventually led to the realization of electrically tunable transmon quantum bits, now often referred to as gatemons. 6-8 Many of the reported experimental realizations of hybrid S-Sm devices rely on bottomup fabrication starting from semiconductor nanowires or carbon nanotubes. 9-16 Recently, new hybrid S-Sm devices were demonstrated using top-down fabrication processes based on two-dimensional systems made of graphene, 17 InAs, 18,19 GaAs, 20 InGaAs 21 or Ge/SiGe. 22,23Top-down nanoscale devices offer significant advantages in terms of complexity and scalability. Those based on p-type SiGe heterostructures are readily compatible with silicon technology, 24 and, thanks to their intrinsically strong spin-orbit coupling, they are an attractive candidate for the development of topological superconducting systems. 22,[25][26][27][28][29][30][31][32] In this work, we present proof-of-concept S-Sm devices in which the semiconducting element consists of an undoped SiGe heterostucture embedding a strained Ge quantum-well (QW). A high-mobility two-dimensional hole gas (2DHG) is electrostatically accumulated in the QW by means of a surface gate electrode. (Hole mobilities as high as 5×10 5 cm 2 /Vs were reported for similar heterostructures. 12,22,33,34 ) The superconducting proximity effect induces gate-tunable superconductivity in the 2DHG enabling JoFET operation. This functionality is exploited for the realization of gate-controlled superconducting quantum interference
Self-aligned sequential lateral field non-uniformities extending uniformly over the sample channel depth are fabricated using a single lithography step for enabling phenotype-specific dielectrophoretic separation of cells.
Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on‐chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100‐fold lower conductivity media by using tangential flows of low media conductivity at 200‐fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow‐focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow‐focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on‐chip sample preparation platform prior to or post‐dielectrophoresis, in‐line with on‐chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.