Self-aligned sequential lateral field non-uniformities extending uniformly over the sample channel depth are fabricated using a single lithography step for enabling phenotype-specific dielectrophoretic separation of cells.
Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on‐chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100‐fold lower conductivity media by using tangential flows of low media conductivity at 200‐fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow‐focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow‐focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on‐chip sample preparation platform prior to or post‐dielectrophoresis, in‐line with on‐chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.