Purpose: Cancer patients are often concurrently treated with analgesics and antineoplastic drugs, yet the influence of analgesic agents on therapeutic activity of antineoplastic drugs is largely unexplored. This study investigates the effects of three commonly used analgesics, which produce analgesia by different mechanisms, on cytotoxicity induced by cisplatin, a widely used antitumor agent, and the relation between those effects and modulation of gap junction function by the analgesics. Experimental Design: The role of gap junctions in the modulation of cisplatin toxicity is explored by manipulation of connexin expression, and gap junction presence and function, using clinically relevant concentrations of the analgesics and cisplatin. Results: Short-term exposure of transformed cells to cisplatin reduced the clonogenic survival in low-density cultures (without gap junction formation) and in high density (with gap junction formation), but the toxic effect was greater at high density. In the absence of connexin expression or with block of connexin channels, cell density had no effect on cisplatin toxicity. Tramadol and flurbiprofen, but not morphine, significantly reduced cisplatin cytotoxicity, but this effect required functional gap junctions between the cells. Tramadol and flurbiprofen inhibited dye-coupling through gap junctions, but morphine did not.
Conclusions:The results suggest that the density dependence of cisplatin toxicity is mediated by gap junctions. They further indicate that tramadol and flurbiprofen depress cisplatin cytotoxicity through inhibition of gap junction activity, and more generally, that agents that depress junctional communication can counteract the effects of antitumor agents. (Clin Cancer Res 2009;15(18):5803-10)
Cisplatin [cis-diamminedichloroplatinum(II)]/oxaliplatin [1,2-diamminocyclohexane(trans-1)oxolatoplatinum(II)] toxicity is enhanced by functional gap junctions between treated cells, implying that inhibition of gap junctions may decrease cytotoxic activity of these platinum-based agents. This study investigates the effect of gap junction modulation by cisplatin/oxaliplatin on cytotoxicity in a transformed cell line. The effects were explored using junctional channels expressed in transfected HeLa cells and purified hemichannels. Junctional channels showed a rapid, dose-dependent decrease in dye coupling with exposure to cisplatin/oxaliplatin. With longer exposure, both compounds also decreased connexin expression. Both compounds inhibit the activity of purified connexin hemichannels, over the same concentration range that they inhibit junctional dye permeability, demonstrating that inhibition occurs by direct interaction of the drugs with connexin protein. Cisplatin/oxaliplatin reduced the clonogenic survival of HeLa cells at low density and high density in a dose-dependent manner, but to a greater degree at high density, consistent with a positive effect of gap junctional intercellular communication (GJIC) on cytotoxicity. Reduction of GJIC by genetic or pharmacological means decreased cisplatin/oxaliplatin toxicity. At low cisplatin/oxaliplatin concentrations, where effects on connexin channels are minimal, the toxicity increased with increased cell density. However, higher concentrations strongly inhibited GJIC, and this counteracted the enhancing effect of greater cell density on toxicity. The present results indicate that inhibition of GJIC by cisplatin/ oxaliplatin decreases their cytotoxicity. Direct inhibition of GJIC and reduction of connexin expression by cisplatin/oxaliplatin may thereby compromise the effectiveness of these compounds and be a factor in the development of resistance to this class of chemotherapeutic agents.
Cisplatin (CDDP) is one of the standard first-line chemotherapeutic agents for advanced non-small cell lung cancer (NSCLC). Unfortunately, prolonged exposure to CDDP results in acquired resistance which prevents the successful treatment of lung cancer patients. Thus, it is necessary to explore the mechanism underlying the resistance of NSCLC to CDDP. In the present study, a CDDP-resistant human lung cancer cell line A549/CDDP was established from the parental cell line A549. The results demonstrated that A549/CDDP cells acquired an epithelial-mesenchymal transition (EMT) phenotype, with morphological changes including acquisition of a spindle-like fibroblastic phenotype, downregulation of E-cadherin, upregulation of mesenchymal markers (vimentin, Snail and Slug), and increased capability of invasion and migration. Compared with A549 cells, the A549/CDDP cells showed decreased connexin43 (Cx43) expression. Overexpression of Cx43 reversed EMT and CDDP resistance in the A549/CDDP cells. Conversely, knockdown of Cx43 expression by siRNA-Cx43 initiated EMT and induced CDDP insensitivity in A549 cells. In summary, Cx43 reverses CDDP resistance in A549 CDDP-resistant cells by preventing EMT, making Cx43 a possible therapeutic target for lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.