Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Whether changes in gut microbial composition participate in the development of UIAs remains largely unknown. We perform a case-control metagenome-wide association study in two cohorts of Chinese UIA patients and control individuals and mice that receive fecal transplants from human donors. After fecal transplantation, the UIA microbiota is sufficient to induce UIAs in mice. We identify UIA-associated gut microbial species link to changes in circulating taurine. Specifically, the abundance of Hungatella hathewayi is markedly decreased and positively correlated with the circulating taurine concentration in both humans and mice. Consistently, gavage with H. hathewayi normalizes the taurine levels in serum and protects mice against the formation and rupture of intracranial aneurysms. Taurine supplementation also reverses the progression of intracranial aneurysms. Our findings provide insights into a potential role of H. hathewayi-associated taurine depletion as a key factor in the pathogenesis of UIAs.
Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin), a low level of iron export (ferroportin), and changes of iron regulators (hepcidin and transferrin receptors), which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1β, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.
In this paper, recent progress in polymer white light‐emitting materials and devices published until April 2012 was reviewed according to the kinds of the materials and devices. The polymer light‐emitting materials were reviewed by the classification of small‐molecule‐doped polymer type, polymer blend type, polymer doped small molecule type, molecule‐dispersed polymer type, dye‐terminated polymer type, and excimer white EL polymer type. The polymer light‐emitting devices were reviewed by the classification of fabricating PWLED through the multilayer device and improving efficiency through the multilayer device. The relationship between the structures of materials or devices and properties was the main content during review. At last, some scientific problems and developing trends on PWLED are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.