Accurate atmospheric visibility prediction is of great significance to public transport safety. However, since it is affected by multiple factors, there still remains difficulties in predicting its heterogenous spatial distribution and rapid temporal variation. In this paper, a recursive neural network (RNN) prediction model modified with the frame-hopping transmission gate (FHTG), feature fusion module (FFM) and reverse scheduled sampling (RSS), named SwiftRNN, is developed. The new FHTG is used to accelerate training, the FFM is used for extraction and fusion of global and local features, and the RSS is employed to learn spatial details and improve prediction accuracy. Based on the ground-based monitoring data of atmospheric visibility from the China Meteorological Information Center during 1st January 2018 to 31st December 2020, the SwiftRNN model and two traditional ConvLSTM and PredRNN models are performed to predict hourly atmospheric visibility in central and eastern China at a lead of 12 h. The results show that the SwiftRNN model has better performance in the skill scores of visibility prediction than those of the ConvLSTM and PredRNN model. The averaged structural similarity (SSIM) of predictions at a lead up to 12 h is 0.444, 0.425 and 0.399 for the SwiftRNN, PredRNN and ConvLSTM model, respectively, and the averaged image perception similarity (LPIPS) is 0.289, 0.315 and 0.328, respectively. The averaged critical success index (CSI) of predictions over 1000 m fog area is 0.221, 0.205 and 0.194, respectively. Moreover, the training speed of the SwiftRNN model is 14.3% faster than the PredRNN model. It is also found that the prediction effect of the SwiftRNN model over 1000 m medium grade fog area is significantly improved along with lead times compared with the ConvLSTM and PredRNN model. All above results demonstrate the SwiftRNN model is a powerful tool in predicting atmospheric visibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.