This paper describes a generic method for the site-specific attachment of lanthanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Escherichia coli arginine repressor. Complexes with Y(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+) and Yb(3+) ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisotropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.
The efficiency of cell-free protein synthesis combined with combinatorial selective 15N-labelling provides a method for the rapid assignment of 15N-HSQC cross-peaks to the 19 different non-proline amino-acid types from five 15N-HSQC spectra. This strategy was explored with two different constructs of the C-terminal domain V of the tau subunit of the Escherichia coli DNA polymerase III holoenzyme, tauC16 and tauC14. Since each of the five 15N-HSQC spectra contained only about one third of the cross-peaks present in uniformly labelled samples, spectral overlap was much reduced. All 15N-HSQC cross-peaks of the backbone amides could be assigned to the correct amino-acid type. Availability of the residue-type information greatly assisted the evaluation of the changes in chemical shifts observed for corresponding residues in tauC16 vs. those in tauC14, and the analysis of the structure and mobility of the C-terminal residues present in tauC16 but not in tauC14.
The covalent attachment of the heme cofactor in c-type cytochromes is a surprisingly complex process, which in bacteria involves a number of different proteins. Among the latter, the ccmE gene product is known to perform a key role in the heme delivery pathway in Gram-negative bacteria. The solution structure of the soluble domain of apo-CcmE from Shewanella putrefaciens was determined through NMR spectroscopy on a 13C,15N-labeled sample. The structure is characterized by a compact core with large regions of beta structure, while the N-terminal and C-terminal regions are essentially unstructured. The overall folding is similar to that of the so-called oligo-binding proteins (OB fold). Solvent-exposed aromatic residues, conserved in all CcmE homologues, have been found in the proximity of His131, the putative heme-binding residue, that could have a role in the interaction with heme. No interaction between CcmE and heme, as well as between CcmE and holocytochrome c, could be detected in vitro by electronic spectroscopy or by NMR. The data available suggest that the heme transfer process is likely to involve a heterooligomeric protein complex and occur under a tight enzymatic control.
The use of (15)N-relaxation data for determination of the dissociation constant of a protein-protein complex is proposed for the situation where a (15)N-labeled protein is bound to an unlabeled protein of high molecular weight, and the chemical exchange between bound and free protein is fast on the NMR time scale. The approach is shown to be suitable for estimating dissociation constants in the micromolar to millimolar range, using protein solutions at relatively low concentration. An example is shown for the interaction between two subunits from the Escherichia coli DNA polymerase III complex, involving a (15)N-labeled fragment of the C-terminal domain of the tau subunit (15 kDa) and the unlabeled alpha subunit (130 kDa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.