Trichoderma spp. are proposed as major plant growth-promoting fungi that widely exist in the natural environment. These strains have the abilities of rapid growth and reproduction and efficient transformation of soil nutrients. Moreover, they can change the plant rhizosphere soil environment and promote plant growth. Pinus sylvestris var. mongolica has the characteristics of strong drought resistance and fast growth and plays an important role in ecological construction and environmental restoration. The effects on the growth of annual seedlings, root structure, rhizosphere soil nutrients, enzyme activity, and fungal community structure of P. sylvestris var. mongolica were studied after inoculation with Trichoderma harzianum E15 and Trichoderma virens ZT05, separately. The results showed that after inoculation with T. harzianum E15 and T. virens ZT05, seedling biomass, root structure index, soil nutrients, and soil enzyme activity were significantly increased compared with the control (p < 0.05). There were significant differences in the effects of T. harzianum E15 and T. virens ZT05 inoculation on the growth and rhizosphere soil nutrient of P. sylvestris var. mongolica (p < 0.05). For the E15 treatment, the seedling height, ground diameter, and total biomass of seedlings were higher than that those of the ZT05 treatment, and the rhizosphere soil nutrient content and enzyme activity of the ZT05 treatment were higher than that of the E15 treatment. The results of alpha and beta diversity analyses showed that the fungi community structure of rhizosphere soil was significantly different (p < 0.05) among the three treatments (inoculated with T. harzianum E15, T. virens ZT05, and not inoculated with Trichoderma). Overall, Trichoderma inoculation was correlated with the change of rhizosphere soil nutrient content.
Trichoderma is a filamentous fungus that is widely distributed in nature. As a biological control agent of agricultural pests, Trichoderma species have been widely studied in recent years. This study aimed to understand the inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani through the side-by-side culture of T. virens ZT05 and R. solani. To this end, we investigated the effect of volatile and nonvolatile metabolites of T. virens ZT05 on the mycelium growth and enzyme activity of R. solani and analyzed transcriptome data collected from side-by-side culture. T. virens ZT05 has a significant antagonistic effect against R. solani. The mycelium of T. virens ZT05 spirally wraps around and penetrates the mycelium of R. solani and inhibits the growth of R. solani. The volatile and nonvolatile metabolites of T. virens ZT05 have significant inhibitory effects on the growth of R. solani. The nonvolatile metabolites of T. virens ZT05 significantly affect the mycelium proteins of R. solani, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), selenium-dependent glutathione peroxidase (GSH-Px), soluble proteins, and malondialdehyde (MDA). Twenty genes associated with hyperparasitism, including extracellular proteases, oligopeptide transporters, G-protein coupled receptors (GPCRs), chitinases, glucanases, and proteases were found to be upregulated during the antagonistic process between T. virens ZT05 and R. solani. Thirty genes related to antibiosis function, including tetracycline resistance proteins, reductases, the heat shock response, the oxidative stress response, ATP-binding cassette (ABC) efflux transporters, and multidrug resistance transporters, were found to be upregulated during the side-by-side culture of T. virens ZT05 and R. solani. T. virens ZT05 has a significant inhibitory effect on R. solani, and its mechanism of action is associated with hyperparasitism and antibiosis.
The effects of the interaction between Suillus luteus (L.) Roussel and Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx on Pinus sylvestris var. mongolica Litv. were studied using plant physiology, mycorrhizal science, forest pathology, and biochemistry. Seedling growth and physiological parameters were determined, including the colonization rate of mycorrhizal fungi, biomass, root activity, photosynthetic pigment content, soluble protein content, antioxidant enzyme activities, rhizosphere soil enzyme activities, and protective enzyme activities. In addition, an optimal resistance system involving T. virens, mycorrhizal fungus (S. luteus), and P. sylvestris var. mongolica seedlings was constructed. Synergies between S. luteus and T. virens were observed, and most of the parameters of P. sylvestris var. mongolica seedlings inoculated with S. luteus 30 days + T. virens were higher than other treatments. After three months, when compared the control, the S. luteus 30 days + T. virens treatment gave increases in height (42.3 %); collar diameter (66.7 %); fresh weight (54 %); dry weight (50 %); soluble protein content (69.86 %); root activity (150 %); chlorophyll a (77.6 %); chlorophyll b (70.5 %); carotenoids (144 %); CAT activity (876.9 %); POD activity (268.3 %); SOD activity (66.18 %); β-1,3-glucanase activity (125.8 %); chitinase activity (40 %); rhizosphere soil catalase activity (97.8 %); and phosphatase activity (266.7 %). These results indicate that there may be a stimulating factor between S. luteus and T. virens when they are inoculated together (S. luteus 30 days + T. virens).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.