This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be "embedded" into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem.
The objective of this paper is to study the mean-variance portfolio optimization in continuous time. Since this problem is time inconsistent we attack it by placing the problem within a game theoretic framework and look for subgame perfect Nash equilibrium strategies. This particular problem has already been studied in [2] where the authors assumed a constant risk aversion parameter. This assumption leads to an equilibrium control where the dollar amount invested in the risky asset is independent of current wealth, and we argue that this result is unrealistic from an economic point of view. In order to have a more realistic model we instead study the case when the risk aversion depends dynamically on current wealth. This is a substantially more complicated problem than the one with constant risk aversion but, using the general theory of time inconsistent control developed in [4], we provide a fairly detailed analysis on the general case. In particular, when the risk aversion is inversely proportional to wealth, we provide an analytical solution where the equilibrium dollar amount invested in the risky asset is proportional to current wealth. The equilibrium for this model thus appears more reasonable than the one for the model with constant risk aversion.Key words: Mean-variance, time inconsistency, time inconsistent control, dynamic programming, stochastic control, Hamilton-Jacobi-Bellman equation * The authors are greatly indebted to Ivar Ekeland, Ali Lazrak, Traian Pirvu, and Suleyman Basak for very helpful discussions. We are also very grateful to two anonymous referees for a number of comments, which have improved the paper considerably.
This paper formulates and studies a general continuous-time behavioral portfolio selection model under Kahneman and Tversky's (cumulative) prospect theory, featuring S-shaped utility (value) functions and probability distortions. Unlike the conventional expected utility maximization model, such a behavioral model could be easily misformulated (a.k.a. ill-posed) if its different components do not coordinate well with each other. Certain classes of an ill-posed model are identified. A systematic approach, which is fundamentally different from the ones employed for the utility model, is developed to solve a well-posed model, assuming a complete market and general Itô processes for asset prices. The optimal terminal wealth positions, derived in fairly explicit forms, possess surprisingly simple structure reminiscent of a gambling policy betting on a good state of the world while accepting a fixed, known loss in case of a bad one. An example with a two-piece CRRA utility is presented to illustrate the general results obtained, and is solved completely for all admissible parameters. The effect of the behavioral criterion on the risky allocations is finally discussed. The authors thank especially Jia-an Yan for remarks and discussions over the years on the general topic considered in this paper. Two anonymous referees have given constructive comments leading to a much improved version. All errors are the responsibility of the authors. Zhou gratefully acknowledges financial support from the RGC Earmarked Grants CUHK4175/03E and CUHK418605, and the Croucher Senior Research Fellowship.
International audienceIn this paper, we formulate a general time-inconsistent stochastic linear--quadratic (LQ) control problem. The time-inconsistency arises from the presence of a quadratic term of the expected state as well as a state-dependent term in the objective functional. We define an equilibrium, instead of optimal, solution within the class of open-loop controls, and derive a sufficient condition for equilibrium controls via a flow of forward--backward stochastic differential equations. When the state is one dimensional and the coefficients in the problem are all deterministic, we find an explicit equilibrium control. As an application, we then consider a mean-variance portfolio selection model in a complete financial market where the risk-free rate is a deterministic function of time but all the other market parameters are possibly stochastic processes. Applying the general sufficient condition, we obtain explicit equilibrium strategies when the risk premium is both deterministic and stochastic
A continuous-time mean-variance portfolio selection problem is studied where all the market coefficients are random and the wealth process under any admissible trading strategy is not allowed to be below zero at any time. The trading strategy under consideration is defined in terms of the dollar amounts, rather than the proportions of wealth, allocated in individual stocks. The problem is completely solved using a decomposition approach. Specifically, a (constrained) variance minimizing problem is formulated and its feasibility is characterized. Then, after a system of equations for two Lagrange multipliers is solved, variance minimizing portfolios are derived as the replicating portfolios of some contingent claims, and the variance minimizing frontier is obtained. Finally, the efficient frontier is identified as an appropriate portion of the variance minimizing frontier after the monotonicity of the minimum variance on the expected terminal wealth over this portion is proved and all the efficient portfolios are found. In the special case where the market coefficients are deterministic, efficient portfolios are explicitly expressed as feedback of the current wealth, and the efficient frontier is represented by parameterized equations. Our results indicate that the efficient policy for a mean-variance investor is simply to purchase a European put option that is chosen, according to his or her risk preferences, from a particular class of options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.