High mammalian gene expression was obtained for more than twenty different proteins in different cell types by just a few laboratory scale stable gene transfections for each protein. The stable expression vectors were constructed by inserting a naturally-occurring 1.006 kb or a synthetic 0.733 kb DNA fragment (including intron) of extremely GC-rich at the 5' or/and 3' flanking regions of these protein genes or their gene promoters. This experiment is the first experimental evidence showing that a non-coding extremely GC-rich DNA fragment is a super "chromatin opening element" and plays an important role in mammalian gene expression. This experiment has further indicated that chromatin-based regulation of mammalian gene expression is at least partially embedded in DNA primary structure, namely DNA GC-content.
Two steps of resistance decreases were observed in cooling Ca1−xLaxFeAs2 (x = 0.18) single crystal under high-pressure condition. The temperature T1 at which the high-T decrease takes place shows little pressure dependence. On the other hand, the low-T decrease was ascribed to a superconducting transition for the zero resistance. With elevating pressure P, both the onset and zero-resistance transition Tc's first increase and then decrease continuously, showing a dome-shape pressure phase diagram with an optimal pressure around 1.19 GPa. The positive-pressure effect of the superconducting transition demonstrates the possibility of exploring higher Tc's in the present material.
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb2. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb2 is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb2 and search for novel properties in this Dirac material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.