Metal oxides of earth-abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy-conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three-stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N-doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe Co O is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec and an overpotential of 257 mV for 10 mA cm and superior ORR activity with a large limiting current density of -5.25 mA cm at 0.6 V. A fabricated Zn-air battery delivers a specific capacity of 756 mA h g (corresponding to an energy density of 904 W h kg ), a peak power density of 86 mW cm and can be cycled over 120 h at 10 mA cm . Other two amorphous bimetallic, Ni Fe O and Ni Co O , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.
The century-old zinc-air (Zn-air) battery concept has been revived in the last decade due to its high theoretical energy density, environmental-friendliness, affordability, and safety. Particularly, electrically rechargeable Zn-air battery technologies are of great importance for bulk applications like electric vehicles, grid management, and portable electronic devices. Nevertheless, Zn-air batteries are still not competitive enough to realize widespread practical adoption because of issues in efficiency, durability, and cycle life. Here, following an introduction to the fundamentals and performance testing techniques, the latest research progress related to electrically rechargeable Zn-air batteries is compiled, particularly new key findings in the last five years (2013-2018). The strategies concerning the development of Zn and air electrodes are in focus. The design of other battery components, namely electrolytes and separators are also discussed. Poor performance of O electrocatalysts and the lack of the long-term stability of Zn electrodes and electrolytes remain major challenges. Finally, recommendations regarding the testing routines and materials design are provided. It is hoped that this up-to-date account will help to shape the future research activities toward the development of practical electrically rechargeable Zn-air batteries with extended lifetime and superior performance.
Electrochemical splitting of water to produce oxygen (O) and hydrogen (H) through a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER) is a promising green approach for sustainable energy supply. Here we demonstrated a porous nickel-copper phosphide (NiCuP) nano-foam as a bifunctional electrocatalyst for highly efficient total water splitting. Prepared from a bubble-templated electrodeposition method and subsequent low-temperature phosphidization, NiCuP has a hierarchical pore structure with a large electrochemical active surface area. To reach a high current density of 50 mA cm, it requires merely 146 and 300 mV with small Tafel slopes of 47 and 49 mV dec for HER and OER, respectively. The total water splitting test using NiCuP as both the anode and cathode showed nearly 100% Faradic efficiency and surpassed the performances of electrode pairs using commercial Pt/C and IrO catalysts under our test conditions. The high activity of NiCuP can be attributed to (1) the conductive NiCu substrates, (2) a large electrochemically active surface area together with a combination of pores of different sizes, and (3) the formation of active Ni/Cu oxides/hydroxides while keeping a portion of more conductive Ni/Cu phosphides in the nano-foam. We expect the current catalyst to enable the manufacturing of affordable water splitting systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.