Damages of a large spiral bevel gear drive as used in heavy industry typically affect the pinion. Even if the gear still could be used, the complete pair has to be changed. This leads to long off times, high costs, and unnecessary waste. This paper applies a recent design technology for spiral bevel gears to the production of a replacement pinion for the sake of energy saving, reduction of costs and off times, and for the realization of green engineering. The process involves the following steps. First, the real tool surface of the gear is measured by a CMM. Based on the new design method, the tooth surface of the mating pinion is derived from this discrete point cloud. In order to improve the meshing performance, the resulting surface of the pinion is modified in the third step. Finally, the pinion is produced on a CNC machining center. In contrast to other approaches, none of these steps needs the parameters of the special machine tool defining the original gear pair. It is worth noting that our technology can also be profitable to gain more freedom in the design of new gear pairs.
The powder injection molding (PIM) process provides a possibility for high-volume, low-cost manufacturing of workpiece. During powder injection molding, besides mold design and material characteristics, injection parameters are critical in affecting the capability of molded commodities. Traditional injection molding parameter design relies on the experience of technicians, and it is difficult to ensure the consistency in the quality of injection parts. In this work, we analyze the optimization of technical parameters of current PIM technology and provide some perspectives on the future development of this field.
Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high‐contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade‐activatable peptide, a target reaction‐induced aggregation peptide (TRAP) system, which can construct polypeptide‐based nanofibers in situ on the cell membrane to achieve long‐term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction‐induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high‐performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade‐activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.
The present paper provides a first step to a new approach to the theory of gearing, which uses modern differential geometry in order to ensure a strict and coordinate-independent formulation. Here, we are mainly concerned with a basic equation, namely, the equation of meshing, of two rotating surfaces in mesh. Since we are able to solve this equation by the time parameter, we derive parameterizations of the mating pinion from a bevel gear as well as a parameterization for gears produced by special machine tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.