Image dehazing is one of the problems that need to be solved urgently in the field of computer vision. In recent years, more and more algorithms have been applied to image dehazing and achieved good results. However, the image after dehazing still has color distortion, contrast and saturation disorder, and other challenges; in order to solve these problems, in this paper, an effective image dehazing method is proposed, which is based on improved color channel transfer and multiexposure image fusion to achieve image dehazing. First, the image is preprocessed using a color channel transfer method based on k-means. Second, gamma correction is introduced on the basis of guided filtering to obtain a series of multiexposure images, and the obtained multiexposure images are fused into a dehazed image through a Laplacian pyramid fusion scheme based on local similarity of adaptive weights. Finally, contrast and saturation corrections are performed on the dehazed image. Experimental verification is carried out on synthetic dehazed images and natural dehazed images, and it is verified that the method proposed is superior to existing dehazed algorithms from both subjective and objective aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.