A multiplexing liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method to quantify three proteins in maize leaves was developed and validated. For each protein, a hybrid Q-TRAP mass spectrometer was operated in the information-dependent acquisition (IDA) mode to select optimal potential signature peptides. The respective signature peptides were then further optimized and quantified as protein surrogates by multiple reaction monitoring (MRM). Leaf crude extracts were subject to microwave-assisted trypsin digestion for 30 min and then injected directly onto a high-performance liquid chromatography (HPLC) column without further separation or enrichment. The minimum sample process enabled us to achieve high recovery and good reproducibility, with a throughput of 200 samples per day. Using recombinant proteins as standards, a linear dynamic quantitative range of 2 orders of magnitude was obtained (correlation coefficient > 0.997) with good accuracy (deviation from nominal concentration < 15%) for all three proteins. Our study demonstrates that LC-MS/MS can be used as an alternative to immunoassays to quantify multiple low abundant proteins in genetically engineered crops.
As essential endogenous compounds, nucleobases and nucleosides fulfill various functions in living organisms. This study presents the development and validation of a new hydrophilic interaction liquid chromatography tandem mass spectrometry method for simultaneous quantification of 19 nucleobases and nucleosides in rat plasma. For the sample preparation, 15 kinds of protein precipitants were evaluated according to the chromatographic profile and ion response of analytes. The optimization of chromatographic separation was respectively performed using reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography mode; each separation mode included two test columns with different stationary phases. The chromatographic profile and parameters such as half-width (W 1/2 ), capacity factor (K′) and tailing factor (f t ) were used to evaluate the separation efficiencies. Furthermore, the adopted composition of two mobile phase systems and the concentrations of the additives in the optimum buffer system were also investigated. The developed method was fully validated and successfully applied quantitatively to determine 19 nucleobases and nucleosides in plasma from normal and diabetic nephropathy (DN) rats. Significant differences between normal and DN rats were found in plasma levels of cytosine, xanthine, thymidine, adenosine, guanosine, inosine and 8-hydroxy-2′-deoxyguanosine. This information may provide a useful reference for the discovery of potential biomarkers of DN.
Overalkylation often appears during the proteolytic digestion process when using iodoacetamide (IAM) to protect the produced side chain thiol of Cys from disulfide bonds.
Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.