To investigate the effect of Zanthoxylum alkylamides (ZA) on amino acid metabolism of type 2 diabetes mellitus (T2DM), the present study was performed with T2DM rats model induced with high fat and sugar fodder combined with low-dose of streptozotocin. ZA were fed to rats at three different doses of 2, 4, and 8 mg/kg for 28 days and metformin was fed to rats at 135 mg/kg as positive control. The results showed that compared with the normal control, the amino acid levels and the expression of related carrier genes were disordered in T2DM rats. Compared with the model, different doses of ZA could significantly resist (p < .05) the decrease in body weight of T2DM rats and improve hyperglycemia, with the best result observed with the high dose (8 mg/kg). Different doses of ZA could ameliorate the levels of 19 kinds of amino acid in the plasma, jejunum, liver, and skeletal muscle of T2DM rats by regulating the expression of related amino acid transporters including LAT1, SNAT2, CAT1, et al. to thereby ameliorating amino acid metabolism disorder in T2DM rats. Practical applications Previous studies showed that Zanthoxylum alkylamides (ZA) could promote the amino acid metabolism in the jejunum of healthy SD rats, improve protein metabolism disorder of type 1 diabetic rats, and also reduce the risk of metabolic syndrome in fat rats model. Herein, we investigated the effect of ZA on amino acid metabolism in type 2 diabetes mellitus (T2DM) rats. The results indicated that ZA could remarkably improve the abnormal expression of amino acid carriers in the jejunum, liver, and skeletal muscle, thereby ameliorating the disorder of amino acid metabolism in the plasma, jejunum, liver, and skeletal muscle of T2DM rats. Therefore, ZA are potential antidiabetic food/medicine product for the T2DM treatment.
Type 2 diabetes mellitus (T2DM) can easily induce insulin resistance (IR) in skeletal muscle, causing protein metabolism disorder and inflammation. The present study aimed to investigate whether Zanthoxylum alkylamides...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.