Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.
Right atriofascicular APs consist of two components. The proximal component is located at the lateral, anterolateral, or posterolateral tricuspid annulus, does not generate an AP potential recordable by catheter electrodes, and is responsible for the decremental conduction properties. The "distal" component extends from the tricuspid annulus to the distal right bundle branch at the apical right ventricular free wall and generates a large, high-frequency AP potential that accurately identifies a site for ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.