We consider a demand management problem of an energy community, in which several users obtain energy from an external organization such as an energy company, and pay for the energy according to pre-specified prices that consist of a time-dependent price per unit of energy, as well as a separate price for peak demand. Since users' utilities are private information which they may not be willing to share, a mediator, known as the planner, is introduced to help optimize the overall satisfaction of the community (total utility minus total payments) by mechanism design. A mechanism consists of message spaces, and a set of tax and allocation functions for each user. Once we implement the mechanism, each user reports a message chosen from her own message space, and then receives some amount of energy determined by the allocation function and pays the tax specified by the tax function. A desirable mechanism induces a game in which Nash equilibria (NE) provides an allocation that coincides with the optimal allocation for the community.As a starting point, we design a standard, "centralized" mechanism for the energy community with desirable properties such as full implementation, strong budget balance and individual rationality for both users and the planner. Then we extend this mechanism to the case of communities where message exchanges only happen among neighborhoods, and consequently, the tax and allocation functions of each user are only determined by the messages from her neighbors. All the properties designed for the centralized mechanism are preserved in the distributed mechanism. Subsequently, we address the problem of learning guarantees for both mechanisms. One set of learning dynamic was found in this primary work, that guarantees users will reach NE if they follow these dynamics.
We consider a demand management problem in an energy community, in which several users obtain energy from an external organization such as an energy company and pay for the energy according to pre-specified prices that consist of a time-dependent price per unit of energy as well as a separate price for peak demand. Since users’ utilities are their private information, which they may not be willing to share, a mediator, known as the planner, is introduced to help optimize the overall satisfaction of the community (total utility minus total payments) by mechanism design. A mechanism consists of a message space, a tax/subsidy, and an allocation function for each user. Each user reports a message chosen from her own message space, then receives some amount of energy determined by the allocation function, and pays the tax specified by the tax function. A desirable mechanism induces a game, the Nash equilibria (NE), of which results in an allocation that coincides with the optimal allocation for the community. As a starting point, we design a mechanism for the energy community with desirable properties such as full implementation, strong budget balance and individual rationality for both users and the planner. We then modify this baseline mechanism for communities where message exchanges are allowed only within neighborhoods, and consequently, the tax/subsidy and allocation functions of each user are only determined by the messages from their neighbors. All of the desirable properties of the baseline mechanism are preserved in the distributed mechanism. Finally, we present a learning algorithm for the baseline mechanism, based on projected gradient descent, that is guaranteed to converge to the NE of the induced game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.