A novel molecularly imprinted solid-phase extraction-ultra-performance liquid chromatography (MISPE-UPLC) method for effective separation and simultaneous determination of cyromazine, melamine, and their metabolites (ammeline and ammelide) in milk samples was developed. Molecularly imprinted polymers (MIP) were synthesized in an ethanol-water system, with melamine as the template and methacrylic acid as the organic functional monomer. The MIP were applied as a specific sorbent for the selective solid phase extraction of cyromazine, ammelide, melamine and ammeline. The molecular recognition mechanism was investigated by molecular simulation and the experiment was validate by using Fourier transform infrared spectroscopy and (1)H nuclear magnetic resonance spectroscopy. A new mechanism based on the formation of both an amido group and hydrogen bonds was developed. A binding study demonstrated that the MIP showed excellent affinity to and high selectivity for melamine and related compounds. Under optimized conditions, we achieved good linearity of the calibration curves with correlation coefficients >0.999. Low limits of quantification (LOQ) for the method were determined to be 1.25, 1.25, 2.59, and 6.42 µg/kg for cyromazine, ammelide, melamine, and ammeline, respectively, which were 3 orders of magnitude smaller than the maximum residue limit (MRL). The high sensitivity of this method allows detection at the microgram per kilogram level. The proposed MISPE-UPLC method is a highly selective and sensitive method for determination of cyromazine, melamine, and their metabolites (ammeline and ammelide) for use in the control and quality assurance of milk.
The proposed method was sensitive, accurate, and rapid. This work may provide a reference for clinical rational drug use and methodology for the pharmacokinetics study of the combined drugs.
A new lead oxyborate, Pb 4 B 6 O 13 , has been successfully synthesized by introducing stereochemically active Pb 2+ cations and distorted OPb 4 tetrahedra into asymmetric borates. Pb 4 B 6 O 13 exhibits an unprecedented two-dimensional ∞ (B 6 O 12 ) 6− layer structure with a large second harmonic generation (SHG) response that is 3 times that of KH 2 PO 4 . In addition, theoretical work, including dipole moment calculations, electronic structure, and SHG coefficients combined with SHG density analysis, is reported. The results suggest that the enhanced SHG of Pb 4 B 6 O 13 is attributed to the synergy effect of three functional units.
Dummy molecularly imprinted microspheres with danthron as template were synthesized and their performance was evaluated. Accelerated solvent extraction can rapidly and effectively remove template molecules from the microspheres. The microspheres were applied as a specific sorbent for solid-phase extraction of six anthraquinones from slimming tea, showing excellent affinity and high selectivity to danthron and the target analytes. The molecular recognition mechanisms were discussed by the experimental validation with IR spectroscopy. The sample was treated using accelerated solvent extraction followed by dummy molecularly imprinted microspheres solid-phase extraction. Under the optimized ultra high performance liquid chromatographic conditions, the six target analytes can be baseline separated in 8 min, and good linearity was obtained in a range of 0.1-40 μg/mL with the correlation coefficient (r(2)) of ≥0.9998. The method limit of quantification was in a range of 1-2 mg/kg, it can ensure analysis of anthraquinones at mg/kg level. The intra- and interday precision (RSD, n = 6) for the analysis of the six analytes in a slimming tea was less than 4.5 and 5.4%, respectively. The developed method can be applied for the selective extraction, effective separation, and rapid determination of six anthraquinones in slimming tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.