Vehicular Ad Hoc Networks (VANETs) can help reduce traffic accidents through broadcasting emergency messages among vehicles in advance. However, it is a great challenge to timely deliver the emergency messages to the right vehicles which are interested in them. Some protocols require to collect nearby real-time information before broadcasting a message, which may result in an increased delivery latency. In this paper, we proposed an improved position-based protocol to disseminate emergency messages among a large scale vehicle networks. Specifically, defined by the proposed protocol, messages are only broadcasted along their regions of interest, and a rebroadcast of a message depends on the information including in the message it has received. The simulation results demonstrate that the proposed protocol can reduce unnecessary rebroadcasts considerably, and the collisions of broadcast can be effectively mitigated.
Car accidents cause a large number of deaths and disabilities every day, a certain proportion of which result from untimely treatment and secondary accidents. To some extent, automatic car accident detection can shorten response time of rescue agencies and vehicles around accidents to improve rescue efficiency and traffic safety level. In this paper, we proposed an automatic car accident detection method based on Cooperative Vehicle Infrastructure Systems (CVIS) and machine vision. First of all, a novel image dataset CAD-CVIS is established to improve accuracy of accident detection based on intelligent roadside devices in CVIS. Especially, CAD-CVIS is consisted of various kinds of accident types, weather conditions and accident location, which can improve self-adaptability of accident detection methods among different traffic situations. Secondly, we develop a deep neural network model YOLO-CA based on CAD-CVIS and deep learning algorithms to detect accident. In the model, we utilize Multi-Scale Feature Fusion (MSFF) and loss function with dynamic weights to enhance performance of detecting small objects. Finally, our experiment study evaluates performance of YOLO-CA for detecting car accidents, and the results show that our proposed method can detect car accident in 0.0461 seconds (21.6FPS) with 90.02% average precision (AP). In additionally, we compare YOLO-CA with other object detection models, and the results demonstrate the comprehensive performance improvement on the accuracy and real-time over other models.INDEX TERMS Car accident detection, CVIS, machine vision, deep learning.
Computation offloading is critical for mobile applications that are sensitive to computational power, while dynamic and random nature of vehicular networks makes it challenging to guarantee the reliability of vehicular computation offloading. In this letter, we propose a reliability-oriented stochastic optimization model based on dynamic programming for computation offloading in the presence of the deadline constraint on application execution. Specifically, a theoretical lower bound of the expected reliability of computation offloading is derived, and then an optimal data transmission scheduling mechanism is proposed to maximize the lower bound with consideration of randomness in vehicle-to-infrastructure (V2I) communications. Experimental results demonstrate that our mechanism can outperform the conventional scheme and benefits vehicular computation offloading in terms of reliability performance in stochastic situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.