Human glioblastoma multiforme (GBM) accounts for the majority of human brain gliomas. Several TMEM proteins, such as TMEM 45A, TMEM 97, and TMEM 140, are implicated in human brain gliomas. However, the roles of TMEM168 in human GBM remain poorly understood. Herein we found that mRNA levels of TMEM168 were overexpressed in GBM patients (
n
= 85) when compared with healthy people (
n
= 10), which was also supported by data from The Cancer Genome Atlas (TCGA). Kaplan–Meier analysis of Gene Expression Omnibus dataset GSE16011 suggested that enhanced TMEM168 expression was associated with shorter survival time. To investigate whether and how TMEM168 functioned in the tumorigenesis of human GBM cells, two human GBM cell lines (U87 and U373) were used for study. Lithium chloride (LiCl), an activator for Wnt/β-catenin pathway, was used for the treatment. Our data suggested that siRNA-TMEM168 (siTMEM168) prevented viability of U87 and U373 cells, induced cell cycle arrest (G
0
/G
1
phase) and promoted apoptosis, and the mechanisms involved in blocking Wnt/β-catenin pathway, as evidenced by reducing expression of β-catenin, C-myc, cyclin D1, and survivin. Furthermore, the inhibited effect of siTMEM168 on human GBM cell growth was significantly alleviated with additional LiCl treatment, substantiating the involvement of the Wnt/β-catenin pathway in this process. In summary, our data demonstrated that TMEM168 may represent a therapeutic target for the treatment of human GBM.
Glioblastoma is an aggressive type of brain cancer with an extremely poor prognosis. Additionally, the F‐box WD repeat‐containing protein 7 (FBXW7) is a component of the ubiquitin‐proteasome system that has been widely implicated in human cancers. In this study, we investigated the role and mechanism of FBXW7 in glioblastoma. FBXW7 expression was analyzed in normal and glioblastoma tissue samples using The Cancer Genome Atlas Glioblastoma Multiforme (TCGA‐GBM) database. Then, quantitative reverse transcription‐polymerase chain reaction (RT‐PCR) was used to examine mRNA expression, whereas, western blot analysis was conducted to determine protein levels of the samples. Furthermore, cell apoptosis was assessed using the Annexin V staining method, followed by flow cytometry analysis. Immunoprecipitation (IP) assay was conducted as well to test protein–protein interactions. Lastly, protein expression in tissues was examined by conducting immunohistochemistry (IHC). Results showed that the glioblastoma tissue samples displayed an FBXW7 downregulation compared with normal tissues. In vitro, the overexpression of FBXW7 in glioblastoma cells induced apoptosis, whereas, its knockdown displayed the opposite effect. Mechanistically, FBXW7 interacted with HDAC7 to promote HDAC7 ubiquitination, however, the overexpression of HDAC7 in glioblastoma cells blocked FBXW7‐induced apoptosis. Finally, FBXW7 and HDAC7 displayed an inverse correlation in glioblastoma tissues in vivo. Therefore, our data demonstrated an important function of FBXW7 in promoting glioblastoma apoptosis by interacting with HDAC7 and promoting HDAC7 ubiquitination.
Subarachnoid hemorrhage (SAH) is a condition with a high associated mortality rate that is caused by hemorrhagic stroke. Activated protein C (APC) serves a neuroprotective role in central nervous system diseases. However, its role in SAH remains unclear. The present study aimed to investigate the role of APC and its regulatory mechanism in SAH. The SAH rat model was constructed through internal carotid artery puncture, while the SAH cell model was established via the application of oxygenated hemoglobin. ELISA was performed to detect the level of cytokines, and flow cytometry was used to determine the population of pyroptotic cells. Reverse transcription-quantitative PCR and western blotting were used to examine the relative mRNA and protein levels of APC. APC was silenced using specific APC short hairpin RNA. Neurological functions of rats were estimated using modified Garcia scoring and the balance beam test, while SAH was estimated using modified Sugawara's scoring. The results demonstrated that the expression of APC was significantly decreased, whereas the expression of NLR family pyrin domain-containing 3 (NLRP3) was increased in the SAH rat model in a time-dependent manner. The application of APC recombinant protein 3K3A-APC could significantly ameliorate SAH and improve neurological functions. In addition, 3K3A-APC could inhibit pyroptosis in a dose-dependent manner in the SAH cell model. Moreover, the NLRP3 inhibitor BAY11-7082 could reverse the upregulation of pyroptosis induced by APC-knockdown. Overall, the present study revealed that APC could ameliorate SAH-induced early brain injury by suppressing pyroptosis via inhibition of the NLRP3 inflammasome, which could provide a novel strategy for the treatment of SAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.