Aim
Genome‐wide genetic data can provide key input for both taxonomy and conservation, but its use in this context remains limited. In this study, we performed the first genome‐wide assessment of genetic variation in two populations of the Eurasian lynx, the Balkan population, the most threatened, and the Caucasian population, a possible glacial refugium, with the aim to place them in the context of the species, investigate their demographic history and evaluate their genetic status.
Location
The Balkans and the Caucasus.
Methods
We obtained whole genome resequencing data from seven Balkan and 12 Caucasian lynx, and analysed them along with novel and existing data from other populations. Based on a total 105 whole genome and 114 mitogenome sequences, we reconstructed phylogenetic and historical relationships, ancient and recent demography, and patterns of genetic diversity and inbreeding.
Results
Both the Balkan and the Caucasian lynx appear as distinct mitochondrial lineages that diverged from the rest of the Eurasian lynx lineages ca. 92.6 kya, and from each other ca. 46.4 kya. Autosomal data suggest, however, that the Balkan lynx is closely related with the Carpathian population, and revealing alarmingly low genetic diversity and high inbreeding. In contrast, the Caucasian lynx shows a longer history of relative isolation from the rest of lynx populations and high genetic diversity, consistent with its large long‐term effective population size.
Main conclusions
The taxonomic status of the Balkan lynx remains unresolved due to the evidence of long‐term isolation in the mitogenome, contrasting with extensive autosomal admixture and intense recent genetic drift in the nuclear genome. Our results alert on genetic risks and call for the consideration of genetic rescue from closely related Carpathian lynxes. In contrast, substantial mitogenomic and autosomal divergence with no signs of genetic drift supports the identification of the Caucasian lynx as a separate subspecies with good genetic health.
We studied the relationship between the variability and contemporary distribution of pelage phenotypes in one of most widely distributed felid species and an array of environmental and demographic conditions. We collected 672 photographic georeferenced records of the Eurasian lynx throughout Eurasia. We assigned each lynx coat to one of five phenotypes. Then we fitted the coat patterns to different environmental and anthropogenic variables, as well as the effective geographic distances from inferred glacial refugia. A majority of lynx were either of the large spotted (41.5%) or unspotted (uniform, 36.2%) phenotype. The remaining patterns (rosettes, small spots and pseudo-rosettes) were represented in 11.0%, 7.4%, and 3.9% of samples, respectively. Although various environmental variables greatly affected lynx distribution and habitat suitability, it was the effect of least-cost distances from locations of the inferred refugia during the Last Glacial Maximum that explained the distribution of lynx coat patterns the best. Whereas the occurrence of lynx phenotypes with large spots was explained by the proximity to refugia located in the Caucasus/Middle East, the uniform phenotype was associated with refugia in the Far East and Central Asia. Despite the widely accepted hypothesis of adaptive functionality of coat patterns in mammals and exceptionally high phenotypic polymorphism in Eurasian lynx, we did not find well-defined signs of habitat matching in the coat pattern of this species. Instead, we showed how the global patterns of morphological variability in this large mammal and its environmental adaptations may have been shaped by past climatic change.
Mountain ungulates around the world have been decimated to small, fragmented populations. Restoring these species often is limited by inadequate information on where suitable habitat is found, and which restoration measures would help to increase and link existing populations. We developed an approach to spatially target threat-specific restoration actions and demonstrate it for bezoar goats (Capra aegagrus) in the Caucasus. Using a large occurrence dataset, we identified suitable habitat patches and evaluate them in terms of connectivity, protection status, and competition with other mountain ungulates. We found extant bezoar goat populations to be highly isolated, yet with widespread areas of suitable, unoccupied habitat between them. Many unoccupied habitat patches were well-connected to extant populations, were at least partly protected,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.